Subarachnoid Hemosiderosis and Superficial Cortical Hemosiderosis in Cerebral Amyloid Angiopathy

J. Linn, J. Herms, M. Dichgans, H. Brückmann, G. Fesl, T. Freilinger and M. Wiesmann

AJNR Am J Neuroradiol 2008, 29 (1) 184-186
doi: https://doi.org/10.3174/ajnr.A0783
http://www.ajnr.org/content/29/1/184
Subarachnoid Hemosiderosis and Superficial Cortical Hemosiderosis in Cerebral Amyloid Angiopathy

SUMMARY: Cerebral amyloid angiopathy (CAA) is an important cause of intracerebral hemorrhage. Its definite diagnosis still requires histopathologic demonstration of vascular amyloid. Thus, further improvement of noninvasive imaging methods would be desirable. Here we present 3 patients with histologically proved CAA, in which superficial cortical hemosiderosis and subarachnoid hemosiderosis were present in T2*-weighted MR images. Thus, we propose that these 2 findings might be valuable as noninvasive diagnostic markers for CAA.

Case Reports

Patient 1

A 70-year-old woman initially presented with slowly progressive aphasia and apraxia. MR imaging revealed a left parietal leptomeningeal lesion with signal hyperintensity on proton-attenuation (PD)-weighted images, and a linear leptomeningeal contrast enhancement on contrast-enhanced T1-weighted images. T2*-weighted images were not performed at this time. Analysis of the CSF showed no pathologic findings.

One week later, the patient experienced acute global aphasia and severe apraxia. CT revealed an acute left temporal ICH, adjacent to the leptomeningeal lesion. MR imaging also demonstrated the acute left temporal ICH. In addition, T2*-weighted images depicted superficial cortical hemosiderosis in the left parietal lobe (Fig. 1), and subarachnoid hemosiderosis in the left frontal lobe. CT did not show any evidence of acute subarachnoid hemorrhage in the left parietal lobe, but in the left frontal lobe. Digital subtraction angiograms did not show any arteriovenous malformation, dural arteriovenous shunts, or sinus or venous thrombosis.

Surgical evacuation of the left temporal ICH including open biopsy of the left parietal meninges was performed. The histopathologic examination revealed beta A4-positive CAA with involvement of the meningeal as well as the cerebral vessels and brain parenchyma.

Patient 2

A 69-year-old man presented at an outpatient clinic with a severe headache, visual disturbances, and nausea lasting 3 weeks. Imaging revealed a left frontal ICH. On admission to our hospital, the patient presented with left-sided hemiplegia. MR imaging revealed an acute ICH in the right anterior temporal lobe and a subacute ICH in the left frontal lobe. In addition, T2*-weighted gradient-echo images demonstrated left frontal subarachnoid hemosiderosis, and left parietal superficial cortical hemosiderosis (distant from the acute macrohemorrhages [Fig 2]). Surgical resection of the right temporal ICH via...
right temporal trepanation and histopathologic evaluation of the resected material revealed CAA.

Patient 3

A 72-year-old woman with a history of breast cancer presented with an acute left-sided, brachiofacial hemiparesis, somnolence (Glasgow Coma Scale of 12), and a gaze deviation to the right side. According to her husband, the patient had experienced a right frontal ICH 3 years previously and had had some deficits in short-term memory since then.

Unenhanced cranial CT demonstrated an acute right frontal ICH. MR imaging revealed a hyperacute, right frontal lobar hemorrhage with signal isointensity on T1-weighted images. In addition to the hyperacute ICH, T2*-weighted gradient-echo images showed subarachnoid hemosiderosis and superficial cortical hemosiderosis in the right frontal and parietal lobe, as well as in the left frontal lobe (Fig 3). As the PD-weighted MR images did not show any hyperintensity in the subarachnoid space in the respective regions, the hypointensity in the T2*-weighted images was not caused by an acute subarachnoid hemorrhage. Instead, it corresponds to chronic subarachnoid hemosiderosis. The right frontal lesion did not show any abnormal contrast enhancement, and contrast-enhanced T1-weighted images did not reveal additional contrast-enhancing intracerebral lesions. Thus, there was no evidence of intracerebral metastasis of the breast cancer. Evacuation of the right frontal ICH via a right parietal trepanation and subsequent histopathologic examination revealed CAA as the underlying cause of the ICH.

Discussion

Here we present the imaging findings of 3 patients with histologically proved CAA in which we observed superficial cortical hemosiderosis and subarachnoid hemosiderosis on T2*-weighted images.

Secondary acute subarachnoid hemorrhage has been described in CAA in cases in which an ICH reaches the cortical surface. It has been speculated that CAA can cause primary subarachnoid hemorrhage as well, but data supporting this hypothesis are still sparse. We found chronic subarachnoid hemosiderosis at sites distant from the localization of acute ICH in 2 of our 3 patients. These observations indicate that these patients had clinically occult subarachnoid hemorrhages and that subarachnoid hemorrhage in CAA cannot only occur as an epiphenomenon if a lobar ICH reaches the cortical surface, but also as a primary hemorrhagic manifestation of CAA. This has also been suggested in cases of familial leptomeningeal amyloidosis. A neuropathologic study by Takeda et al further supports this hypothesis, as it shows that in some
cases of CAA the primary hemorrhage occurs in the subarachnoid space.

Besides subarachnoid hemosiderosis, we observed linear superficial cortical hemosiderosis, defined as linear blood residues in the superficial cortical layers of the brain on the T2*-weighted images in our patients. In accordance with our findings, Kumar et al identified 1 patient in their study on superficial siderosis of the CNS who had a history of supratentorial intraparenchymal hemorrhages caused by CAA, in whom superficial deposits of hemosiderin were present over the cerebral convexities, but not in the posterior fossa, which is the typical localization of the hemosiderosis observed in superficial siderosis of the central nervous system.12

The superficial cortical hemosiderosis observed in our patients could have been caused by a primary bleeding in the superficial cortical layers, but it has been shown in animal models with experimental siderosis that repeated bleeding in the subarachnoid space leads to deposition of hemosiderin in the subpial layer of the brain.13 Thus, we propose the same mechanism as the underlying pathogenesis of the linear superficial cortical hemosiderosis that we observed in our patients.

The schematic drawing in Fig 4 illustrates the development and imaging appearance of subarachnoid hemosiderosis and superficial cortical hemosiderosis. In patient 1, we observed a leptomeningeal contrast enhancement in a cortical region that was affected by CAA. Although this finding has been described previously in patients with familial amyloidosis, its detailed pathologic cause remains unclear.

On the basis of the imaging findings in the patients presented here, we propose superficial cortical hemosiderosis and subarachnoid hemosiderosis as potentially useful MR imaging criteria to facilitate the noninvasive diagnosis of CAA. Prospective studies with a larger number of cases are necessary to systematically assess the value of these MR signs in diagnostic settings.

Acknowledgment
We thank Ms. J. Benson for copyediting the manuscript.

References