Development of delayed epidural hematoma.

A T Nelson, P R Kishore and S H Lee

AJNR Am J Neuroradiol 1982, 3 (5) 583-585

http://www.ajnr.org/content/3/5/583.citation

This information is current as of October 20, 2023.
Development of Delayed Epidural Hematoma

Alfred T. Nelson,1 P. R. S. Kishore,2 and Seungho H. Lee3

Delayed epidural hematomas are not often seen in head injury victims. Two cases of such epidural hematomas that developed after evacuation of contralateral subdural hematomas are reported. We discuss the value of postoperative computed tomography (CT) on patients undergoing prior decompressive surgery for traumatic lesions and the need for plain skull radiography.

Case Reports

Case 1

A 24-year-old man was brought to the emergency room after a beating to the head with a baseball bat. At the time of admission he was noted to have a dilated right pupil and abnormal extensor responses bilaterally. The initial CT scan revealed a large, right, acute, subdural hematoma with appropriate right-to-left shift of the midline structures (fig. 1A). He underwent a decompressive craniotomy with evacuation of the subdural hematoma. Failure to improve neurologically at 24 hr after surgery led to a repeat CT examination. It revealed a large, left, acute, epidural hematoma (fig. 1B). A left frontotemporal arterial groove was found. At operation a left temporal bone fracture was present. Because of its sensitivity for the detection of linear skull fractures not initially recognized. CT was not available at the time.

Our epidural hematomas were not present on initial CT and developed within 24 hr of evacuation of a contralateral subdural hematoma. The epidural lesions were apparently responsible for the failure of improvement in neurologic status of the patients after surgery.

The phenomenon of delayed traumatic intracerebral hematoma has been noted especially after decompressive surgery for the initial lesions. It has been suggested that the original mass effect tamponades injured vessels until surgical decompression [3, 4]. This may also be the case in the formation of delayed epidural hematomas. Ford and McLaurin [10] showed that a critical area of dura must be separated from the overlying bone during injury and that the hematoma forms when this area is acted upon by an arterial bleeder. It may be that the mass effect caused by the subdural hematoma prevents dural separation until surgical decompression occurs.

In all three cases of delayed epidural hemorrhage (including the previously reported one) an overlying linear skull fracture was present. Because of its sensitivity for the detection of acute traumatic intracranial lesions, CT became the primary radiologic method of investigation. If CT reveals a mass lesion requiring immediate decompressive surgery, skull radiography may be neglected. Although depressed fractures of calvarium may easily be seen on CT, partial volume effect and the finite size of the pixel may prevent the detection of linear fractures of the skull vault and base. Considerable controversy exists in the literature about the effectiveness of skull radiography in head trauma [11–13]. Further, the significance of detecting linear skull fractures in the management and outcome of head injury patients was questioned by other investigators [14].

Although it is true that a skull fracture and brain injury

Received November 10, 1981; accepted after revision February 16, 1982.

This work was supported by National Institutes of Health grant NS-12587.

1Division of Neurosurgery, Medical College of Virginia, Richmond, VA 23298.

2Division of Neuroradiology, Medical College of Virginia, Richmond, VA 23298. Address reprint requests to P. R. S. Kishore.

3Department of Radiology, Upstate Medical Center, Syracuse, NY 13210.

AJNR 3:583–585, September/October 1982 0195-6106/82/0305-0583 $00.00 © American Roentgen Ray Society
Fig. 1.—Case 1. A, Initial scan. Right frontoparietal subdural hematoma. Appropriate midline shift. B, Postoperative scan. Large left frontal epidural hematoma. Original subdural hematoma no longer present.

Fig. 2.—Case 2. Initial scan. Right subdural hematoma with shift of midline structures.

Although uncommon, delayed epidural hemorrhage may develop as a complication of fracture after decompressive surgery, as shown by our two cases. This phenomenon underscores another reason for skull radiography even if CT is performed and shows a lesion requiring immediate surgery. Skull films can be obtained subsequently to detect fractures since epidural hematomas are eminently treatable with prompt diagnosis and evacuation [18].

REFERENCES