Functional MR Imaging and the Future of Neuroradiology

A.J. Nemeth

AJNR Am J Neuroradiol 2009, 30 (2) 218
doi: https://doi.org/10.3174/ajnr.A1493
http://www.ajnr.org/content/30/2/218

This information is current as of October 21, 2023.
Acknowledgments
The authors thank Leigh Gray, Certified Clinical Research Professional, for preparation of the table and William J. Tremaine, MD, for manuscript review.

References

D.F. Kallmes
Department of Radiology
Mayo Clinic
Rochester, Minn
R.M. Ruedy
Vice President, Regulatory, Clinical and Quality Affairs
Cardica, Inc.
Redwood City, Calif

DOI 10.3174/ajnr.A1373

EDITORIAL

Functional MR Imaging and the Future of Neuroradiology

This month’s issue of the American Journal of Neuroradiology features a very interesting article entitled, “Effects of Donepezil on Cortical Activation in Mild Cognitive Impairment: A Pilot Double-Blind Placebo-Controlled Trial Using Functional MR Imaging.”1 Briefly, the authors found increased activation in the donepezil group relative to the placebo group in the ventrolateral prefrontal cortex and decreased activation in the placebo group relative to the donepezil group in the dorsolateral prefrontal cortex. In addition, the left inferior frontal gyrus demonstrated enhanced activation associated with donepezil but not the placebo. These results suggest the presence of specific cortical targets for donepezil’s actions, which may be evaluated in future research.

Apart from the direct objectives of the study reported, the article points to the importance of advanced imaging and related research for the future of neuroradiology. Functional MR imaging (fMRI) provides the potential to achieve a greater understanding of relatively uncharted central nervous system diseases, especially dementia and, specifically, Alzheimer disease.2 Mild cognitive impairment, the focus of the above article, may be a forme fruste of Alzheimer disease. Understanding mild cognitive impairment and the effects of donepezil via fMRI raises the potential for predicting clinical response to therapy and may help guide future clinical trials of new treatment.

Developmental disorders such as autism and psychiatric diseases such as schizophrenia are also very active areas of fMRI research.3,4 These diseases have not previously been associated with specific imaging findings that are evaluated in routine clinical practice. With new means of studying these diseases via advanced neuroimaging, we may find underlying, specific defects to be targeted in treatment.

We have advanced beyond anatomic imaging and tissue characterization into the realm of neural tissue physiology. We are able to investigate not only “how does the brain appear?” but also “how does the brain function?” or, more to the point, “how does the brain malfunction under the duress of disease?” fMRI will help us to answer these questions, and perhaps even newer modalities using molecular or genetics imaging strategies will take us further.5 What lies ahead for us are real challenges: We must incorporate functional imaging into our research agendas and our clinical practices. These tools must become part of the core competencies of neuroradiologists.

The American Society of Functional Neuroradiology (ASFNR) is a great advocate for the development of advanced neuroimaging. Established at an organizational meeting during the Annual Meeting of the American Society of Neuroradiology in 2004, this group will undoubtedly play a key role in keeping neuroradiology at the forefront of new technology. The third Annual Meeting of ASFNR will be held later this month, February 25–27, 2009, in San Antonio, Tex.

References

A.J. Nemeth
Neuroradiology Section
Northwestern University
Chicago, Ill

DOI 10.3174/ajnr.A1493