Precision of Cerebrovascular Reactivity Assessment with Use of Different Quantification Methods for Hypercapnia Functional MR Imaging

S.D. Goode, S. Krishan, C. Alexakis, R. Mahajan and D.P. Auer

AJNR Am J Neuroradiol 2009, 30 (5) 972-977
doi: https://doi.org/10.3174/ajnr.A1496
http://www.ajnr.org/content/30/5/972
Cerebral blood flow (CBF) is tightly controlled to meet metabolic demands according to neural activity levels and to counterbalance systemic variation in blood pressure. Several control mechanisms are integrated to maintain adequate cerebral tissue perfusion. Metabolic, myogenic, and local mechanisms interact to maintain constant CBF despite wide variations in arterial blood pressure, referred to as cerebral autoregulation. Cerebrovascular reserve (CVR) reflects the spare capacity of the cerebral circulation to increase CBF in response to regulatory vasodilatory stimuli. The main cerebral vasodilatory stimulus is carbon dioxide (CO2); hence, exogenous CO2 and acetazolamide have been used to assess CVR. Alterations in these cerebral hemodynamic control parameters are present in various disease states\(^1\)\(^-\)\(^4\) with increasingly recognized pathophysiologic relevance. Tools for noninvasive mapping of cerebrovascular parameters including CVR would thus be desirable to complement emerging physiologic imaging techniques to predict tissue at hemodynamic risk.\(^5\)\(^-\)\(^7\)

Many techniques have been developed for noninvasive assessment of CVR. In a clinical setting, measurements of CBF are performed with use of transcranial Doppler (TCD), by quantifying change in flow velocity in the middle cerebral artery (MCA) on a vasodilatory challenge such as hypercapnia, apnea, or acetazolamide. Positron-emission tomography and single-photon emission CT (SPECT) have also been used to detect and locate quantitative brain perfusion changes with similar stimuli.\(^8\)\(^-\)\(^10\) However, these latter 2 techniques are not widely available, are expensive, and involve significant radiation, therefore limiting their clinical usability. More recently, the blood oxygen level–dependent (BOLD) functional MR imaging (fMRI) technique has been applied to assess CVR in healthy volunteers and in patients,\(^5\)\(^,\)\(^7\)\(^-\)\(^11\)\(^-\)\(^13\) but the quantitative reliability is uncertain. Recent publications have also shown the value of hypercapnia BOLD fMRI to predict normal and abnormal hemispheric CVR.\(^14\)

BOLD fMRI is sensitive to changes in the local deoxyhemoglobin concentration, which varies with perfusion and blood volume changes in a complex but qualitatively predictable manner. BOLD contrast is based on the fact that deoxyhemoglobin acts as an endogenous contrast agent. BOLD hypercapnia fMRI detects increase in tissue oxygenation resulting from increases in CBF induced by CO2 inhalation while demands in oxidative metabolism remain constant. This mechanism leads to an observed BOLD signal intensity increase related to measurable T2* prolongation. Over a reasonable range of increases in CO2, there is a linear increase in CBF and cerebral blood volume (CBV) with an exponential plateauing close to maximal dilation.\(^15\)\(^,\)\(^16\) It has previously been assumed that BOLD signal intensity increases also linearly with CO2, but this is speculative and more recent theoretic models of hemodynamic BOLD response suggest a nonlinear relationship.\(^17\)\(^-\)\(^19\)

Cerebrovascular Reactivity Assessment with Use of Different Quantification Methods for Hypercapnia Functional MR Imaging

BACKGROUND AND PURPOSE: Tools for noninvasive mapping of hemodynamic function including cerebrovascular reactivity are emerging and may become clinically useful to predict tissue at hemodynamic risk. One such technique assesses blood oxygen level–dependent (BOLD) MR imaging contrast in response to hypercapnia, but the reliability of its quantification is uncertain. The aim of this study was to prospectively investigate the intersubject and interhemispheric variability and short-term reproducibility of hypercapnia functional MR imaging (fMRI) in healthy volunteers and to assess the effects of different methods of quantification and normalization.

MATERIALS AND METHODS: Sixteen healthy volunteers, (7 women and 9 men) underwent hypercapnia fMRI with a clinical 1.5T scanner, 8 underwent scanning twice. We determined BOLD amplitude changes using a visually defined block design or automated regression to end-tidal (ET) carbon dioxide (CO2). Absolute percent signal intensity changes (PSC) were extracted for whole-brain, gray matter, and middle cerebral artery territory, and also normalized to ET CO2 change. Intersubject and intrasubject (between hemispheres and sessions) coefficients of variation (COV) were derived. We assessed the effects of different quantification methods on reproducibility indices using the t-test and U-tests.

RESULTS: The mean change in ET CO2 was 7.8 ± 3.3 mm Hg. Averaged BOLD increases varied from 2.54% to 2.92%. Short-term reproducibility was good for absolute PSC (4.8% to 10%) but poor for normalized PSC (range, 24% to 27% COV). Intersubject reproducibility varied between 11% and 23% for absolute PSC and, again, was poorer for normalized data (32% to 39%). Interhemispheric reproducibility of absolute PSC was excellent ranging between 1.24 and 2.16% COV.

CONCLUSIONS: In conclusion, quantification of cerebrovascular reactivity with use of hypercapnia fMRI was found to have good between-session and very good interhemispheric reproducibility. The technique holds promise as a diagnostic tool, especially for sensitive detection of unilateral disease.

Received October 21, 2008; accepted after revision December 11.
From the Departments of Academic Radiology (S.D.G., S.K., C.A., D.P.A.), Vascular and Endovascular Surgery (S.D.G.), and Anaesthesia and Intensive Care (R.M.), Queens Medical Centre, Nottingham, UK.
Please address correspondence to Dr. S.D. Goode, Department of Academic Radiology, B Floor, West Block, Queens Medical Centre, Derby Rd, Nottingham NG7 2UH, United Kingdom; e-mail: msexsg@nottingham.ac.uk
DOI 10.3174/ajnr.A1496

ORIGINAL RESEARCH

S.D. Goode
S. Krishan
C. Alexakis
R. Mahajan
D.P. Auer

RESEARCH ORIGINAL
Previous studies have used simple ratios to normalize fMRI response to varying levels of hypercapnia expressed as % BOLD signal intensity or %\(R^2* \)change/mm Hg end-tidal (ET)CO\(_2\) change.\(^5,7,12,20\) The validity of this approach has not been tested.

There are potential advantages of this technique versus TCD because BOLD fMRI assesses the hemodynamic effects on tissue oxygenation rather than blood flow velocity. It is noteworthy that BOLD hypercapnia fMRI 1) affords whole-brain mapping and, hence, assessment of regional heterogeneity and 2) is sensitive to vasodilatory effects mediated by collateral arteries, inaccessible to TCD techniques. The disadvantage of hypercapnia fMRI is its semiquantitative nature and complex dependence on blood flow and volume changes and on the ratio between arterial and venous blood volume. Arterial spin-labeling (ASL) would be a quantitative method to directly assess CBF and, hence, CVR; however ASL has poor signal-to-noise intensity at 1.5T, which is still currently the main clinical platform for MR imaging.

Current clinical practice is to increasingly offer brain MR imaging to patients with cerebral ischemia (stroke and transient ischemic attack) that would allow for uncomplicated routine use of an integrated CVR assessment. Application of such a technique to map CVR would be extremely useful in patients with a hemodynamically significant brain lesion such as an arteriovenous malformation whereby the normal autoregulatory mechanisms have been altered, or in patients with intracranial or extracranial steno-occlusive disease to evaluate future stroke risk, perhaps even as a risk stratification tool for carotid intervention. However, the clinical usefulness of such a test is dependent on sufficient reliability and reproducibility of the diagnostic test.

Therefore, the aim of our study was to assess the reliability of a standardized quantitative hypercapnia fMRI protocol with use of a clinical 1.5T scanner. Specifically, we aimed to assess intrasubject and intersubject reproducibility for different analysis techniques and CO\(_2\) normalization. For the different analysis techniques, we determined BOLD amplitude changes by using a visually defined block design or automated regression to ET\(\text{CO}_2\).

Materials and Methods

Study Sample

Sixteen healthy volunteers (7 women and 9 men with a mean age of 27.7 years (age range, 19–34 years)) without neurologic signs and symptoms and no medical or drug history were included in the study after giving informed written consent. All subjects were medication free and were asked not to consume caffeine for the 4 hours before the scanning session. Eight subjects underwent subsequent scans on the same day after a 30-minute break outside the scanner. The hospital research and development department and medical school research ethics committee approved the study.

MR Imaging

MR imaging studies were performed on a clinical 1.5T scanner (Intera; Philips, Best, the Netherlands). A standard 8-channel head coil was used for imaging, with use of a gradient-echo echo-planar sequence with the following parameters: TR, 3500 ms; TE, 60 ms; flip angle, 90°; matrix size, 64 × 64; FOV, 192 mm; sections, 33; thickness, 3 mm; and no gap. A total of 160 volumes (approximately 9 minutes acquisition time) were acquired for each experiment.

CO\(_2\) Stimulation

We controlled ET\(\text{CO}_2\) by using a standard nonrebreathing anesthetic circuit with 2 one-way valves to prevent rebreathing. The circuit incorporated a reservoir bag of 2 L to compensate for any large tidal volume breaths. Subjects breathed through a comfortably secure standard anesthetic mask to ensure a closed circuit. ET\(\text{CO}_2\) was continuously monitored via a sampling tube at the mouthpiece level. ET\(\text{CO}_2\) recordings were made during the entire experiment, and a reading was taken every 3.5 s to correlate with the length of time of each volume acquisition or 1 dynamic (ie, 1 TR).

We used free gas flow of 1-L/min O\(_2\) and 8-L/min air and then provided a fixed amount of CO\(_2\) (1 L/min), therefore providing 10% CO\(_2\). Control of CO\(_2\) gas flow was via an external source outside of the MR imaging scanner. We used high 10% CO\(_2\) to achieve maximal vasodilation, and we monitored the ET\(\text{CO}_2\) level aiming for an increase in ET\(\text{CO}_2\) between a 7- and 8-mm Hg change. This was performed by 2 experienced and medically qualified practitioners (S.D.G., S.K.) who were familiar with the experiment setup. During the 9-minute long paradigm, all of the subjects underwent 2 periods of hypercapnia and 3 periods of normocapnia. We also continuously monitored the subjects’ blood pressure, pulse, and arterial oxygen saturations continuously by using a MR compatible device (In vivo; Siemens, Malvern, Pa).

Data Analysis

We analyzed all data using FSL software (http://www.fmrib.ox.ac.uk/fsl/), FMRI Expert Analysis Tool (FEAT) deploying standard preprocessing with high-pass filtering, and smoothing and motion correction using MCFLIRT.\(^{21}\) During the FSL analysis, the ET\(\text{CO}_2\) data acquired during the scanning session are incorporated into the design matrix of the general linear model by the 2 methods described below. A Gaussian model was used for modeling the hemodynamic response function. A limitation of our CO\(_2\) setup included a sampling delay in ET\(\text{CO}_2\) from patient to capnometer outside the scanner room. There was also a second time lag of BOLD signal intensity change after increase in ET\(\text{CO}_2\) level. The FSL analysis method compensated for these time lags by allowing for a temporal derivative of the design matrix waveform. This essentially shifts the waveform slightly in time during the analysis to enable a better fit of the data and model.
Visualization of the ETCO₂ change averaged during the experiment was divided into tissue compartments: whole brain (i.e., supratentorial brain), gray matter (GM), and white matter (WM). Percent signal intensity changes (PSC) were derived for the following absolute PSC were higher for gray matter than with white matter (Table 1).

Assymetry Index

The degree of hemispheric asymmetry (hemispheric asymmetry index [hAI]) was determined according to hAI = 200 X (PSC dominant hemisphere - PSC nondominant hemisphere)/(PSC sum both hemispheres) as in studies by Baciu et al.,25 de Boorder et al.26 and Kaminogo et al.27 The 95% confidence intervals were also given for hAI.

Statistical Analysis

We performed statistical calculations using the Statistical Package for Social Sciences version 15.0 (SPSS, Chicago, Ill) software. We then compared data using the Student’s t-test and the Mann-Whitney U test for parametric and nonparametric variables, respectively. Correlations were performed with the Pearson correlation coefficient. Inter-subject and intrasubject variability were expressed as coefficients of variation. Statistical significance was set as P < .05. Data are expressed as mean percentage signal intensity change ± SD. The statistical software STATA (StataCorp, College Station, Tex) was used for linear regression analysis and to assess data for nonlinearities by use of a quadratic term. Regression involved use of a random intercept model to allow for multiple observations.

Results

General Findings

All 16 subjects tolerated the experiment well without adverse reactions during the course of study to inhalation of CO₂. The observed motion as estimated by FSL was within acceptable limits in all cases (i.e., < 3 mm in x-, y-, and z-axis). There were no significant alterations in blood pressure, pulse, and oxygen saturations after CO₂ stimulation. The mean baseline ETCO₂ level was 35.4 ± 5 mm Hg. The mean peak ETCO₂ level was 43.3 ± 5.6 mm Hg. The mean change in ETCO₂ was 7.8 ± 3.3 mm Hg. The intersubject coefficient of variation (COV) of ETCO₂ change was 41%, and intrasubject reproducibility was 29%.

All subjects showed strong and qualitatively symmetric BOLD signal intensity increases during hypercapnia. Significant responses were not limited to brain parenchyma with high z-scores in both gray matter and the subarachnoid spaces and lower z-values in white matter voxels with a clearly visible interface between gray and white matter (Fig 3). As expected, absolute PSC were higher for gray matter than with white matter (Table 1).

Absolute PSC and ETCO₂ Levels

We found a significant linear correlation between PSC and ETCO₂ levels for both methods of BOLD amplitude estimation (R² = 0.244 (P = .0001) for the boxcar method and R² = 0.18 (P = .003) for the automated method (see Fig 4 for boxcar method). To further explore the possibility of a nonlinear relationship between PSC and ETCO₂ change, we tested the data using a quadratic term and found no significant relationship.

Reliability of Boxcar vs Automated Determination of Absolute PSC

There was a small but significant bias toward higher absolute PSC when using the boxcar compared with the regression model that failed to reach significance for whole-brain gray matter (Table 1). A good test-retest short-term reproducibility was found for absolute PSC for both the boxcar and regression analysis methods (range, 4.8% to 10% COV; Table 2).

Intrasession, interhemispheric reproducibility of absolute PSC was excellent (range, 1.2% to 2.2% COV) depending on tissue and analysis method. Correlation between hemispheric absolute PSC was very high for both analysis methods (0.963–
Mean hemispheric asymmetry indices were low for all regions of interest (Table 3).

Effect of ETCO2 Normalization

Linear correction for ETCO2 unexpectedly led to substantial degradation of reliability. Short-term reproducibility of normalized data yielded an unacceptably high COV of more than 23% (Table 2). Deterioration was significant for all the regions/tissue types except for whole-brain and gray matter data analyzed with the automated method that still showed a similar trend.

Between-Subject Variation

Intersubject variability. Similar to intrasubject reproducibility, the between-subject variation was lower for the non-normalized compared with CO2 normalized data (Table 4). Of note, the automated regression analysis method revealed lower COV, suggesting improved correction for between-subject variability of physiologic factors with lowest values for the MCA territory (14.2%) and white matter (11.3%).
Discussion

Our study investigated both the short-term reproducibility and intersubject variability of hypercapnia BOLD fMRI in a group of young healthy volunteers and compared various quantification methods. The main findings are that absolute BOLD signal intensity changes after 10% hypercapnia challenge 1) yield good short-term reproducibility (≤10%), 2) reveal very good interhemispheric reproducibility (<4%), and 3) show better reproducibility and lower between-subject variability than BOLD ratios normalized to $ETC0_2$.

BOLD fMRI techniques are becoming increasingly used in clinical studies. To be used as a diagnostic clinical test, the technique needs to be reliable (ie, precise and accurate). Accuracy of CVR assessments with hypercapnia fMRI has been assessed against SPECT,28 with favorable results. The reported accuracy of CVR assessments with hypercapnia fMRI has been shown to be 23.1% reliable (ie, precise and accurate). Ac- clinical studies. To be used as a diagnostic clinical test, the technique needs to be reliable (ie, precise and accurate). Accuracy of CVR assessments with hypercapnia fMRI has been assessed against SPECT,28 with favorable results. The reported accuracy of CVR assessments with hypercapnia fMRI has been shown to be 23.1% reliable (ie, precise and accurate). Accur-

Discussion

Our study investigated both the short-term reproducibility and intersubject variability of hypercapnia BOLD fMRI in a group of young healthy volunteers and compared various quantification methods. The main findings are that absolute BOLD signal intensity changes after 10% hypercapnia challenge 1) yield good short-term reproducibility (≤10%), 2) reveal very good interhemispheric reproducibility (<4%), and 3) show better reproducibility and lower between-subject variability than BOLD ratios normalized to $ETC0_2$.

BOLD fMRI techniques are becoming increasingly used in clinical studies. To be used as a diagnostic clinical test, the technique needs to be reliable (ie, precise and accurate). Accuracy of CVR assessments with hypercapnia fMRI has been assessed against SPECT,28 with favorable results. The reported accuracy of CVR assessments with hypercapnia fMRI has been shown to be 23.1% reliable (ie, precise and accurate). Ac- clinical studies. To be used as a diagnostic clinical test, the technique needs to be reliable (ie, precise and accurate). Accuracy of CVR assessments with hypercapnia fMRI has been assessed against SPECT,28 with favorable results. The reported accuracy of CVR assessments with hypercapnia fMRI has been shown to be 23.1% reliable (ie, precise and accurate). Accur-

Discussion

Our study investigated both the short-term reproducibility and intersubject variability of hypercapnia BOLD fMRI in a group of young healthy volunteers and compared various quantification methods. The main findings are that absolute BOLD signal intensity changes after 10% hypercapnia challenge 1) yield good short-term reproducibility (≤10%), 2) reveal very good interhemispheric reproducibility (<4%), and 3) show better reproducibility and lower between-subject variability than BOLD ratios normalized to $ETC0_2$.

BOLD fMRI techniques are becoming increasingly used in clinical studies. To be used as a diagnostic clinical test, the technique needs to be reliable (ie, precise and accurate). Accuracy of CVR assessments with hypercapnia fMRI has been assessed against SPECT,28 with favorable results. The reported accuracy of CVR assessments with hypercapnia fMRI has been shown to be 23.1% reliable (ie, precise and accurate). Ac- clinical studies. To be used as a diagnostic clinical test, the technique needs to be reliable (ie, precise and accurate). Accuracy of CVR assessments with hypercapnia fMRI has been assessed against SPECT,28 with favorable results. The reported accuracy of CVR assessments with hypercapnia fMRI has been shown to be 23.1% reliable (ie, precise and accurate). Accur-
we demonstrated that the standard proposed normalization was inadequate and impaired reproducibility. Until the full nature of this relationship is clarified, control of potential confounding effects from ETCO_2 via regression analysis is required for systematic evaluation of CVR between subjects and effects from interventions. From a practical aspect for clinical application, additional standardization of ETCO_2 may further mitigate the problem. Dynamic end-tidal forcing, described by Wise et al.20, independently sets ETCO_2 to desired levels by rapid alteration of inspired gases on a breath-by-breath basis via computer feedback. This method targets the desired ETCO_2 change and may further improve reproducibility for individual CVR mapping.

Conclusions

In conclusion, assessing cerebrovascular reactivity with use of hypercapnia fMRI and absolute BOLD amplitude estimation was found to be safe and reproducible in healthy volunteers. Analysis of absolute BOLD signal intensity change yielded good short-term and very good interhemispheric stability. Larger normative data in older healthy subjects and patient studies are warranted to probe the clinical usefulness of CVR assessment by quantitative hypercapnia fMRI.

References

5. van der Zande FH, Hofman PA, Backes WH. Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI. Neuroradiology 2005;47:114–20
17. Piekirk SN, Chiarelli PA, Jezzard P. Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO_2 manipulation. Neuroimage 2008;39:107–18