CT Assessment of Woodworkers' Nasal Adenocarcinomas Confirms the Origin in the Olfactory Cleft

AJNR Am J Neuroradiol 2009, 30 (7) 1440-1444
doi: https://doi.org/10.3174/ajnr.A1648
http://www.ajnr.org/content/30/7/1440
CT Assessment of Woodworkers’ Nasal Adenocarcinomas Confirms the Origin in the Olfactory Cleft

BACKGROUND AND PURPOSE: Endoscopic endonasal surgery let us observe that woodworkers’ nasal adenocarcinomas originate in the olfactory cleft. Our aim was the identification of CT imaging features that corroborate the olfactory cleft as the site of origin for woodworkers’ adenocarcinoma.

MATERIALS AND METHODS: We designed a retrospective study to compare CT scans of 27 unilateral olfactory cleft adenocarcinomas with 30 cases of nasosinusal polyposis (NSP) and 33 healthy sinus controls. Enlargement of the olfactory cleft, lateralization of the ethmoidal turbinate wall, and contralateral bulging of the nasal septum were measured on coronal scans passing through cribriform plate and posterior half of both ocular globes. Comparisons have been performed by using analysis of variance and the Bonferroni procedure.

RESULTS: The nasal septum was significantly bulging across the midline in adenocarcinoma (4.6 ± 3 mm; range, −0.1–13.7 mm) compared with NSP (0.7 ± 1 mm; range, −2.1–2.3 mm) or healthy sinus controls (0.5 ± 1 mm; range, −1.2–2 mm) (P < .001). The olfactory cleft was significantly wider in adenocarcinoma (15.1 ± 4.5 mm; range, 8.6–25.7 mm) than in NSP (3.8 ± 0.4 mm; range, 2.8–4.6 mm) or healthy sinus controls (3.3 ± 0.7 mm; range, 1.4–4.6 mm). The ethmoidal labyrinth width was significantly smaller on the pathologic side in adenocarcinoma (7.2 ± 2.7 mm; range, 3.2–14.2 mm) than in the control groups (P < .001). Whereas the angle between the conchal lamina and vertical midline was close to zero degrees in NSP (0.03 ± 2.25°; range, −5°–3°) and healthy sinus controls (0.45 ± 2.13°; range, −5°–5°), it reached 39.76 ± 13.83° (P < .001) in adenocarcinoma.

CONCLUSIONS: Radiologists should suspect nasal adenocarcinoma on sinus CT scans showing a unilateral expanding opacity of the olfactory cavity.

Neoplastic diseases of the nose and para nasal sinuses require thorough assessment of location and extension to plan appropriate treatment. Adenocarcinoma is known to be associated with exposure to wood dust and usually develops in woodworkers.1 Woodworkers’ adenocarcinoma is classically described as originating in the ethmoid sinuses and is resected by a transfacial or craniofacial approach.2

During the last decade some authors have shown that malignant tumors could also be resected by using endonasal endoscopic surgical techniques.3,4 Our experience in this field started in 2000, and since 2004, we have suspected that woodworkers’ adenocarcinoma could originate in the olfactory cleft in most cases. A prospective study in 20 consecutive patients undergoing endonasal endoscopic resection between 2004 and 2006 has confirmed the origin of woodworkers’ adenocarcinoma in the olfactory cleft.5

Moreover endoscopic resection revealed that woodworkers’ adenocarcinomas grow out of the olfactory cleft into the nasal cavity like polyp neoplasms with well-defined bodies and that for a long time, even after becoming large, many of them do not invade, but just displace and push out the surrounding structures (ie, the nasal septum and the turbinate wall of the ethmoidal labyrinth).6

The aim of this study using CT was an attempt to detect imaging features (ie, enlargement of the olfactory cleft, lateralization of the ethmoidal turbinate wall, and contralateral bulging of the nasal septum) that suggest the olfactory cleft as the site of origin for woodworkers’ adenocarcinoma.

Materials and Methods

We designed a retrospective study to compare the CT scans of 27 consecutive woodworkers having undergone surgery under endoscopic control on unilateral olfactory cleft adenocarcinomas between January 2004 and June 2007 with the CT scans of 30 patients having undergone surgery for nasosinusal polyposis (NSP) and 33 controls with healthy sinuses.

Patients

Adenocarcinoma Group. Adenocarcinoma diagnosis was based on preoperative biopsies. Preoperative radiologic evaluation has been based on CT scans and MR images. Patients were selected for endoscopic surgery with multidisciplinary agreement involving surgeons, radiotherapists, medical oncologists, and radiologists. Contraindications to endoscopic surgery were intracranial (2 patients), intraorbital (0 patients), or facial skin invasion (1 patient). For the sake of this study, the exceptional patients having bilateral or contralateral extension of the tumor were excluded (3 patients). The study group was composed only of men between 54 and 79 years of age (mean, 68 years). They all had been woodworkers (ie, had been exposed to wood dust during their occupational life for at least 12 cumulated months; French legal mention for Occupational Diseases7).

Control Groups. Using the last digit of each number in a table of random numbers, we collected the CT scans of 30 patients (21 men; mean age, 51 years; range, 24–77 years) among 189 patients who had...
undergone surgery for NSP without respiratory epithelial adenomatoïd harmatoma (REAH) on pathologic examination in our department between 2003 and 2005. NSP is a chronic inflammatory disease of the ethmoidal sinus mucosa leading to a protrusion of benign edematous polyps from the meatus into the nasal cavity; REAH is a benign tumor originating in the olfactory cleft, which may coexist in the setting of inflammatory polyps and may enlarge the olfactory cleft width on CT, which is characterized by a glandularlike structural proliferation lined by ciliated respiratory epithelium.

We also randomly collected 33 CT scans with normal findings of healthy patients (19 women; mean age, 36 years; range, 18–62 years) from the data base of the radiology department of our institution.

Anatomic Terminology

The olfactory cleft (Fig 1) is a narrow chamber opening anteriorly and inferiorly into the nasal fossa, closed laterally by the turbinate wall of the ethmoidal labyrinth and medially by the corresponding nasal septum; closed superiorly, from anterior to posterior, by the nasal and frontal bones, the cribiform plate, and the anterior process of the sphenoid roof; and closed posteriorly by the anterior wall of the sphenoid sinus.

The turbinate wall of the ethmoidal labyrinth is made of the conchal lamina and the attached middle and superior (and inconsistently the supreme) turbinates; it separates the olfactory cleft from the ethmoidal labyrinth.

Because the cribiform plate lies more caudal than the ethmoidal roof, the turbinate wall of the ethmoidal labyrinth is attached to the ethmoidal roof due to the lateral lamella of the intracranial olfactory groove.

CT Assessment

Measurements were performed by using a PACS Workstation (AGFA-Gevaert, Health Care, Mortsel, Belgium) from reformatted coronal images with a bone window (level, 200 HU; width, 200 HU).

One coronal scan passing through the crista galli and the posterior half of both ocular globes was selected. In the control groups, 1 side was selected as the "pathologic side" by using a random table of numbers (even numbers for selecting the right side). We measured the following parameters:

1) OC, width between the midline and the septal bulging or deviation (Fig 2).
2) CD, width of the olfactory cleft on the pathologic side (Fig 2).
3) ECL, angle between the midline xy and the conchal lamina (Fig 3).
4) DE, width of the ethmoidal labyrinth on the pathological side (Fig 2).
5) AE, naso ethmoidal cavity total width (Fig 2).

Statistical Analysis

Descriptive statistics are presented as means, SDs, and ranges. We used analysis of variance and the Bonferroni procedure for correction of multiple testing to compare radiologic features between adenocarcinoma, polyposis, and healthy groups. The level of type I error used to determine statistical significance in the analysis was 5%. Statistical analysis was performed by using SAS System for Windows, Version 9.01 (SAS Institute, Cary, NC).

Results

Descriptive results are summarized in the Table.

The OC distance measured a significant deviation of the nasal septum toward the contralateral side of the tumor in the adenocarcinoma group, compared with the polyposis or
masses from tumors. MR imaging, especially in the differentiation of large polypoid
nosis of malignancy but does not approach the specificity of
Contrast-enhanced CT may, in many cases, suggest the diag-
intensity on the T1 sequence due to the high protein content.
Thick mucinous secretions may be intermediate in signal in-
lowing them to be differentiated from the high signal intensity
nign from malignant disease and tumor from secondary mu-
range of information about attenuation, signal intensity, con-
they may enhance following the administration of contrast.
appearances of malignant tumors of the sinonasal region are
Discussion

healthy groups (P < .001) (Fig 4A). The olfactory cleft (CD
width) was significantly wider in patients with adenocar-
noma than in patients with NSP or healthy controls (P < .001)
(Fig 4B). The ethmoidal labyrinth width (DE) on the patho-
logic side was significantly smaller in the adenocarcinoma
group than in the 2 control groups (P < .001) (Fig 4C). The
nasoethmoidal cavity total width (AE) was not different in the
3 groups. Whereas the ECL angle between the midline xy and
the conchal lamina was close to zero degrees in both the NSP
and healthy control groups, it was measured at 39.76 ± 13.83°
(P < .001) in the adenocarcinoma group (Fig 4D).

<table>
<thead>
<tr>
<th>Descriptive results*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>OC</td>
</tr>
<tr>
<td>CD</td>
</tr>
<tr>
<td>DE</td>
</tr>
<tr>
<td>AE</td>
</tr>
<tr>
<td>ECL (degrees)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note:—NSP indicates nasosinusal polyposis; OC, width between midline and septal bulging or deviation; CD, width of olfactory cleft on pathologic side; DE, ethmoidal labyrinth width; AE, nasoethmoidal cavity total width; ECL, angle between midline and conchal lamina. * Mean ± SD, range.

This new knowledge about the origin and growing behavior of nasal adenocarcinoma improves the imaging diagnosis. The radiologist should now suspect the diagnosis of nasal adeno-
carcinoma on the sinus CT scan of woodworkers on the basis of unilateral opacity of the olfactory cleft with signs of
gradual expansion of the olfactory cavity (ie, bulging of the
nasal septum and lateralization of the ethmoidal turbi-
wall). These characteristic features have been observed in each
of our 27 cases of adenocarcinoma. This highly suggests that
the remodelling of the olfactory cleft can be considered the
result of a tumor originating in the olfactory cleft rather than a
process originating more inferiorly in the nasal cavity and
growing superiorly into the olfactory cleft secondarily. This
remodelling of the olfactory cleft was not observed in our 2
control groups.

We have not checked for intra- and interobserver variabil-
ity in our measurements. This lack can be considered a limi-
tation of our study because this variability could affect the level
of measurement of parameters (OC, CD, DE, AE, ECL) in each
group. However, the data presented in the Table show large
differences between adenocarcinoma and control groups,
which are probably not very sensitive to intra- and interob-
server variability.

The squeezed ethmoidal labyrinth is usually opaque, but
this corresponds to mucous retention in the ethmoidal cells.
When one looks closely, the bony conchal lamina, which is the
upper portion of the ethmoidal turbinat wall, and the bony
partitions of the ethmoidal cells remain visible despite their
more-or-less severe squeezing onto the orbital wall; some-
times the inferior part of the ethmoidal labyrinth is reduced to
a thin opaque layer with the tumor penetrating into the max-
ilary sinus through the fontanelle area or bulging onto the
medial orbital wall (Fig 6A). Most interesting in large tumors,
the upper part of the ethmoidal labyrinth, which lies above the
line tangent to the cribriform plate and below the ethmoidal
roof (Fig 1), remains, most of the time, uncrushed because the
slow-growing tumor originating in the olfactory cleft (below
the cribriform plate) sequesters a small triangle of ethmoidal
cells under the ethmoidal roof (which lies more cranially by
lateralizing (not invading) the conchal lamina. All these fea-
tures are confirmed and better illustrated on MR imaging (Fig
6C, -D), which is also the imaging technique of choice in the
evaluation of intracranial and intraorbital extension.
The radiologist should, however, consider a few differential diagnoses, especially in patients who are not woodworkers. Esthesioneuroma is also a unilateral tumor originating in the olfactory cleft. This rare tumor initially expands slowly and unilaterally, allowing the bone to remodel around it. Tumoral calcification is often seen. More aggressive behavior can occur with gross intracranial extension through the cribriform plate, which is better identified on MR imaging.11,12 REAH is a pathologic entity individualized by Wenig and Heffner in 1995,13 presenting as a benign tumor also originating and expanding in the olfactory cleft. With the methods of measurement used in the present study, it has been shown that REAH can be suspected preoperatively on CT enlargement of the olfactory clefts.9 REAH may coexist in the setting of inflammatory nasosinusal polyps and may enlarge bilaterally the olfactory clefts or can also develop primarily, unilaterally, or bilaterally, favoring secretion retention in the ethmoid and other paranasal sinuses. Clinically, it might present as a differential diagnosis of nasosinusal polyposis or neoplastic lesions like an inverted papilloma or adenocarcinoma. REAH must be suspected on CT enlargement of the olfactory clefts,9 but the final diagnosis belongs to the pathologist.

Finally, another advantage of knowing that woodworkers’...
Adenocarcinomas originate in the olfactory cleft is early diagnosis of small tumors. In 2 cases in our series of 27 adenocarcinomas, the clinical presentation was limited to loss of the sense of smell. The sinus CT revealed, in both woodworkers, a unilateral opacity limited to the olfactory cleft (Fig 6B), which led to careful endoscopy of this very narrow cavity and biopsies that revealed the diagnosis of adenocarcinoma of the olfactory cleft.14 The most common presentation of nasal adenocarcinoma includes nasal airway obstruction, epistaxis, nasal discharge, pain, or swelling of facial soft tissue. Only poor attention has been paid to loss of the sense of smell, probably because either patients or general practitioners do not always care about the loss in sense of smell or perhaps otorhinolaryngologists do not always perform careful endoscopic examination of the olfactory cleft or ask for CT scans in patients having lost the sense of smell. Radiologists should now search for small olfactory cleft opacities more than for ethmoidal labyrinth opacities in woodworkers with anosmia and actually in all patients with anosmia. The role of systematic endoscopic and/or CT examination of the olfactory clefts in people exposed to wood dust needs to be evaluated as a means of early detection of occupational adenocarcinoma.

In conclusion, most clinicians and radiologists have paid attention to the ethmoidal labyrinth during the last 2 decades. Pathology in the adjacent olfactory cleft does, however, also exist. Woodworkers’ adenocarcinoma, an occupational malignancy, was believed, until recently, to originate in the ethmoidal labyrinth. Endoscopic endonasal surgery has recently revealed its origin in the olfactory cleft. Our study indicates that CT can preoperatively suggest the diagnosis of adenocarcinoma due to remodelling features of the olfactory cleft in woodworkers.

References