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RESEARCH
PERSPECTIVES

Texture Analysis: A Review of Neurologic MR
Imaging Applications

A. Kassner
R.E. Thornhill

SUMMARY: Texture analysis describes a variety of image-analysis techniques that quantify the varia-
tion in surface intensity or patterns, including some that are imperceptible to the human visual system.
Texture analysis may be particularly well-suited for lesion segmentation and characterization and for
the longitudinal monitoring of disease or recovery. We begin this review by outlining the general
procedure for performing texture analysis, identifying some potential pitfalls and strategies for avoiding
them. We then provide an overview of some intriguing neuro-MR imaging applications of texture
analysis, particularly in the characterization of brain tumors, prediction of seizures in epilepsy, and a
host of applications to MS.

ABBREVIATIONS: ABSV � absolute gradient value; AIS � acute ischemic stroke; ANN � artificial
neural network; CIS � clinically isolated syndrome; d � distance; DCE � dynamic contrast-
enhanced; FCD � focal cortical dysplasia; FLAIR � fluid-attenuated inversion recovery; fx �
second-order gray-level co-occurrence feature number “x”; GLCM � gray-level co-occurrence
matrix; GM � gray matter; HT � hemorrhagic transformation; LDA � linear discriminant analysis;
MGL � mean gray level; MGR � mean gradient; MS � multiple sclerosis; MTR � magnetization
transfer ratio; NAWM � normal-appearing white matter; Ng � number of gray levels; PCA �
principal components analysis; PPMS � primary-progressive MS; RLM � run-length matrix; ROC �
receiver-operator characteristic; ROI � region of interest; RRMS � relapsing-remitting MS; rtPA �
recombinant tissue plasminogen activator; SPMS � secondary-progressive MS; SVM � support
vector machine; � � direction; VGL � variance of gray levels; VGR � variance gradient; WM �
white matter

Conventionally, radiologists produce diagnoses on the basis
of a combination of their training, experience, and indi-

vidual judgment. Radiologists perceive and recognize image
patterns and associate or infer a diagnosis consistent with
those patterns. It follows that there will be an inevitable degree
of variability in image interpretation as long as it relies primar-
ily on human visual perception.1,2 Tools for automated pat-
tern recognition and image analysis can provide objective in-
formation to support clinical decision-making and may serve
to reduce this variability. Texture analysis, for example, de-
scribes a wide range of techniques that enable quantification of
the gray-level patterns, pixel interrelationships, and the spec-
tral properties of an image. An inherent property of all sur-
faces, “texture” provides us with a vocabulary to describe the
variation in surface intensity or patterns, including some that
are imperceptible to the human visual system. Texture analysis
was initially developed for the assessment of aerial photo-
graphs,3,4 with the first reported applications to medical image
interpretation appearing shortly thereafter.5-7 Although ini-
tially slow to build clinical interest, there has been a sort of

“texture renaissance” during the past decade, coincident with
the steep increase in computational and digital storage capa-
bility, as well as a growing comfort with (and demand for)
automatic or semiautomatic image analysis tools.8

The emerging hypothesis is that by examining the nature of
gray-level transitions in medical images, we can extract a sub-
set of textural features, or what Tourassi8 referred to as a “tex-
ture signature,” that will best characterize the pathology or
disease process of interest. Texture analysis has already dem-
onstrated considerable potential in neuro-MR imaging as an
objective strategy for lesion segmentation and characteriza-
tion, particularly in cases in which the lesions are inseparable
on the basis of standard T1, T2, proton-attenuation, or diffu-
sion-weighted imaging, as will be discussed in this review. Ad-
ditionally, texture may assist in scenarios in which robustness
is particularly desirable, such as in monitoring disease pro-
gression or in the longitudinal evaluation of emerging ther-
apies. We begin this review by providing a recipe for per-
forming texture analysis, followed by a brief survey of its
applications to neuro-MR imaging.

Strategies for Texture Analysis
Texture analysis is tremendously versatile and can be applied
to virtually any digital image. If the spatial extent of the lesion
can be identified by an independent means, then the applica-
tion of texture analysis can be restricted to a set of predefined
regions of interest (eg, lesion versus “normal” or contralateral
reference). In the selection of image region of interest or image
size, the investigator or analyst will have to balance the need to
capture sufficient textural information for classification pur-
poses with the desire to avoid including objects that span mul-
tiple tissue categories.9 The flowchart provided in Fig 1 outlines
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the general strategy for implementing texture analysis, regardless
of whether regions of interest or whole images are selected.

Feature Estimation
Numerous approaches to the quantification and characteriza-
tion of image texture have been proposed, with most textural
features falling under 3 general categories: syntactic, statistical,
and spectral. Syntactic texture analysis identifies fundamental
or “primitive” elements of the image, which are then linked
through syntax.10 Although it appears to show potential for
brain surface mapping and volumetry,11 to the best of our
knowledge, there have been very few reported applications of
syntactic texture analysis to neuro-MR imaging, so we will
focus primarily on statistical and spectral approaches. Fortu-
nately, virtually all of the features discussed herein can be eval-
uated with freely accessible software or programming tools,
(eg, the OpenGL tool MaZda; Piotr M. Szczypiński, Institute
of Electronics, Technical University of Lodz, Lodz, Poland).

Statistical Features. Formulas for all of the statistical fea-
tures discussed herein are provided in the Appendix. Readers
will immediately recognize the first-order statistical features
(On-line Table 1, Appendix),9 particularly MGL and VGL,
because these are routinely quantified directly on the console
and are self-explanatory. The remaining 3 first-order features
refer to gradient parameters that characterize local gray-level
differences.

The second-order statistical features are extracted from
GLCMs and RLMs, respectively. In brief, a GLCM is con-
structed by systematically considering the relationship be-
tween pixel pairs and tabulating the frequency of various gray-
level combinations within an image or within a region of

interest (On-line Table 2, Appendix).9 The maximum number
of gray levels considered for each image or region of interest is
typically scaled down to 32 or 64 levels, rather than using the
full dynamic range of, for example, 65,536 gray levels (16 bits/
pixel). This quantization step is required to avoid a large num-
ber of zero-valued entries in the co-occurrence matrix (ie,
sparse matrices).12 Figure 2 provides a schematic guide to the
construction of a single GLCM of a hypothetic 3 � 3 pixel
image. Given an image f(x,y) with a set of Ng discrete gray
levels, the matrix hd�(i,j) is defined such that entry (i,j) is equal
to the number of times that f(x1, y1) � i and f(x2, y2) � j, where
(x2, y2) is the sum of (x1, y1) and (dcos�, dsin�). A GLCM is
computed for each distance, d � 1, …, n pixels in each direc-
tion, � (eg, � � 0°, 45°, 90°, and 135°). Fourteen textural fea-
tures can be extracted from each 2D GLCM for each combi-
nation of d and � (On-line Table 2, Appendix).

In a similar manner, run-length features can be computed
to evaluate the coarseness of a texture in a predetermined di-
rection.13 A gray-level run consists of a set of consecutive col-
linear pixels in a given direction, �. The RLM is constructed
such that P�(i,j) is the number of gray-level runs j pixels long
for a given gray level, i. The usefulness of run-length features
relative to GLCM or even first-order features has been the
subject of some debate. Early comparison studies14,15 sug-
gested that run-length features are the least efficient texture
features relative to GLCM, gray-level difference features, and
features derived from spatial-frequency power spectra. A
more recent comparison, however, found that run-length fea-
tures performed comparably well with those derived from
GLCM and were superior to wavelet features for the identifi-
cation of 16 images from the VisTex texture data base (Mas-

Fig 1. Overview of the steps involved in texture analysis of medical images.
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sachusetts Institute of Technology, Media Laboratory, Cam-
bridge, Massachusetts).16 Formulae for run-length features
are provided in On-line Table 3 of the Appendix.

With the possible exception of features that are extracted
from parametric T1 or T2 maps, we would strongly advise that
GLCM and RLM features undergo normalization at this stage
(eg, dividing each entry in the GLCM or RLM by the total
number of matrix entries).17 This step will facilitate interscan
comparisons, not only between subjects but also for longitu-
dinal evaluations of the same subjects.

Spectral Features. Co-occurrence or run-length features
may lack the sensitivity to identify larger scale or more coarse
changes in spatial frequency.18 Wavelet functions, for exam-
ple, can be designed to evaluate spatial frequencies at multiple
scales and have found a natural application to texture analy-
sis.19 Readers will recognize the close relative of the wavelet
tranform, the Fourier transform, which can identify the spatial
frequencies present in a signal intensity but cannot delineate
temporal changes in frequency content and presumes that all
signals reflect a superposition of sinusoids. Some time local-
ization can be imparted to Fourier analysis by means of the
windowed or “short-time” method, which allows for the Fou-
rier transform to be performed on sequential portions of the
entire signal intensity, each of a set length or “window.”20

The wavelet transform provides even more flexibility by
enabling us to trade some degree of spatial-frequency resolu-
tion for the ability to localize this frequency content in time.
An intuitive way to think of the wavelet transform is to imag-
ine a window of constant area but fluid dimensions, its width
(time) narrowing with increasing length (spatial frequency)
and vice versa, making it equally suitable for identifying fine
texture (short bursts of high spatial frequency) and coarse tex-
ture (slow waves of low-frequency content). Unlike the Fou-
rier transform, the wavelet transform does not require sinu-
soidal basis functions. In fact, “wavelet” refers to the
generalized basis function used to compute the transform,
which involves scaling and translating a core or “mother”
wavelet function and comparing each resultant “daughter”
wavelet with the signal intensity and computing a coefficient
reflecting the strength of this similarity (wavelet coeffi-
cients).21 As such, the wavelet transform is an inherently mul-
tiscale analysis method. Due to the computational complexity
of the continuous wavelet transform, however, there is a sub-
stantial disincentive for implementing this type of analysis in
the clinical setting. Others have proposed more parsimonious
approaches such as the discrete orthonormal Stockwell trans-
form, which can be computed in a clinically realistic
timeframe.22

Fig 2. A, Construction of a simple GLCM from a stylized 3 � 3 pixel image with 3 gray levels (Ng � 3); distance, d � 1 pixel; and direction, � � 0° (ie, left or right only). We begin
by identifying the reference pixel, with gray-level i, and counting the number of neighboring pixels with gray-level j. B, For example, looking at the second entry in the first row of the
GLCM and counting n (0,1) we see 2 pixels with gray level � 0 that have left- or right-handed neighbors with gray level � 1. If we look at the entry for (i,j) �(1,2) we count 1 pixel
with gray level � 1, which has a left- or right-handed neighbor with gray level � 2.
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Feature Selection and Extraction: Avoiding “Fishing
Expeditions”
The next priority is to select the subset of features most likely
to distinguish 1 tissue class or patient diagnosis from another.
The challenge here is that even a modest GLCM approach with
3 d and 4 � values can produce many more textural features
(df) than are suitable for the number of positive cases that will
be ultimately subjected to classification. If measures are not
taken to reduce the number of features before classification,
then the statistical model will better reflect the noise or ran-
dom error than the underlying data (so-called “overfit-
ting”).23 Fortunately, there are a number of strategies available
for dimensionality reduction, beginning with simple consoli-
dation or averaging of a given feature over all directions.12 One
can also manually select a subset of features a priori, particu-
larly if previous work has convincingly isolated the features
most relevant to the hypothesis being tested. Scatterplots and
linear regression can be used to evaluate correlations between
pairs of textural features and, therefore, identify potentially
redundant features.17 More systematic techniques can be im-
plemented to search for feature subsets, such as those based on
the Fisher criterion24 or by means of PCA, which we have
previously used to extract mutually orthogonal features from
the larger consolidated feature space (or from the entire orig-
inal feature space).25

Feature Classification and Evaluation
The classification of textural features is analogous to a radiol-
ogist’s clinical interpretation and involves partitioning the
streamlined feature space according to tissue class or diagnos-
tic category. Classification is typically accomplished by using a
decision or discriminant function. Provided that the feature
space is multivariate normal, supervised classification can be
performed by using the Bayesian decision theory or linear dis-
criminant analysis with a distance classifier (often the Mahal-
anobis distance26). Supervised classification of nonparametric
data can be accomplished by using decision trees, k-nearest
neighbor,27 support vector machines,28 or neural network29,30

techniques. The accuracy or success of our feature classifica-
tion strategy is generally evaluated by cross-validation, begin-
ning with dividing the data into training and testing subsets,
performing the classification on the training set, and then val-
idating the results of the classification on the testing set. If we
then re-partition the original cases and repeat the procedure,
we can ultimately use the average classification accuracy as our
overall validation metric. We can also construct a logistic re-
gression model by assigning the most discriminating features
as predictors and either tissue class or diagnosis as the out-
come measure.31 The classification accuracy is then calculated
by measuring the area under the ROC curve. We should also
note that unsupervised classification techniques including
K-means or hierarchical clustering32 are suitable for sce-
narios in which there is no prior knowledge of how the
feature space is organized; therefore, all cases belong to a
single testing set.

The Potential Clinical Role for Texture Analysis
Textural features may complement the macrotexture infor-
mation already used by radiologists, such as the organization
of lesions within normal brain parenchyma. In the following

section, we will attempt to illustrate how texture analysis has
been applied to the diagnosis and characterization of brain
tumors, epilepsy, and MS.

Brain Tumors
One of the earliest neuro-MR imaging applications of statisti-
cal texture analysis was the characterization of brain tu-
mors.17,33 This remains a particularly important problem be-
cause there can be substantial intersection between the T1 and
T2 of benign and malignant brain tumors,34-36 which compli-
cates lesion characterization with conventional MR imaging.
Lerski et al17 were the first to report an MR imaging texture
analysis procedure for identifying tumor constituents in their
1993 feasibility study of 12 patients with intracranial tumors.
The authors combined first-order histogram, gradient, and
second-order GLCM features (f1, f2, f3, and f9) as extracted
from T1- and T2-weighted spin-echo MR images into a 4-
layer hierarchical decision tree with stepwise discriminant
analysis applied at each level to identify the features most ca-
pable of discriminating between and among tissue and tu-
mor constituents (ie, CSF, WM, GM, solid tumor, and
edema). The results of the 4-layer classification tree are
depicted in Fig 3.

Mahmoud-Ghoneim et al37 were able to further stratify
tumor constituents, identifying a separate texture class corre-
sponding to peritumoral WM. The authors discovered that the
specificity of GLCM features for the identification of tumor
constituents could be improved by extending the evaluation of
in-plane 2D interpixel relationships to include through-plane
3D relationships (ie, in a multiple-section volume). Com-
pared with their 2D equivalents, the 6 GLCM features ex-
tracted from 3D noncontrast T1-weighted gradient-echo im-
ages were superior for discriminating between necrosis and
solid tumor (sensitivity and specificity were each 100% for 3D
versus 75% and 60% for 2D) and between solid tumor and
edema (sensitivity and specificity were each 82% for 3D versus
60% and 55% for 2D).

The objectivity of texture analysis depends on the assump-
tion that images are acquired, processed, and analyzed under
identical conditions. Herlidou-Même et al35 acquired stan-
dard T1- and T2-weighted images from 10 healthy volunteers
and 63 patients with confirmed intracranial tumors and data
acquired by using 3 different scanners to test the robustness of
the technique. The authors were able to use the same statistical
textural features to segment the tumors, irrespective of the
acquisition parameters, scanner, reconstruction, or process-
ing used, and reported highly reproducible results in a head-
to-head comparison of second-order features computed from
T1- and T2-weighted images of gliomas acquired with 3 dif-
ferent MR imaging scanners.

With respect to multiscale or spectral features, Brown et
al38 have suggested that the Stockwell transform is sensitive
enough to distinguish among tumor genotypes, such as in the
identification of oligodendrogliomas with a genetic signature
associated with good outcomes. The spectral analysis of T2-
weighted MR images with the Stockwell transform was more
accurate than visual assessment, with a sensitivity and speci-
ficity of 93% and 96%, respectively, for delineating these par-
ticular tumor genotypes (compared with 70% and 63% for
visual assessment). The authors cautioned that these results,
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while impressive, were obtained in a retrospective analysis and
the technique will require further validation before clinical
implementation. In a similar manner, Stockwell transform
analyses of T2-weighted images have shown potential for
identifying the patients with high-grade gliomas (glioblas-
toma multiforme) most amenable to therapy.39 Specifically,
Drabycz et al39 compared visual assessment with the analysis
of spatial frequency with respect to their capacity to identify
the methylation status of a gene promoter associated with
good chemotherapeutic outcomes. After examination of the
Stockwell spectra for T2, FLAIR, and postcontrast T1 im-
ages, the authors found that the spectral features extracted
from T2-weighted images were more specific markers of
methylation status than visual identification of ring-en-
hancement (65% versus 39%) but at a loss of sensitivity
(79% versus 93% for spectral and visual textural features,
respectively).

Epilepsy
Apart from excluding tumors or other lesions that could pre-
cipitate seizures, the objectives in epilepsy imaging include the
identification of cortical dysplasia and, particularly in the case
of patients with temporal lobe epilepsy, detecting evidence of
hippocampal sclerosis. Both of these objectives demand high-
resolution anatomic images (usually 3D T1-weighted gradi-
ent-echo) that are capable of good GM delineation.40 For ex-
ample, high-resolution cortical images are needed to
investigate focal disruption of the cortical lamination, in-
creased cortical thickness,41 among other abnormalities that

can pose a serious risk for seizures.42 Bernasconi et al43 devel-
oped a strategy for identifying FCD with a combination of
morphologic and texture analysis of 3D T1-weighted MR im-
ages (16 FCD and 20 healthy controls). The authors produced
3 types of feature maps: 1) a GM thickening map, 2) a gradient
map to identify the GM/WM interface, and 3) a relative signal-
intensity map. Ratio maps, reflecting information from all 3
maps were then constructed by using the following formula:
[(GM Thickness � Relative Signal Intensity)/Gradients].
ROC analysis revealed that the ratio maps were superior to
visual assessment, with 87.5% sensitivity and 95% specificity
for identifying FCD. For comparison, the conventional visual
assessment of MR images achieved 50% sensitivity and 100%
specificity. This work was later extended by introducing 2 ad-
ditional tissue classes: the GM/WM transition class and the
GM/CSF class.44

In addition to the morphometric and first-order features
used in Bernasconi’s work, Antel et al44 also calculated 3D
GLCM features. The authors acquired T1-weighted MR im-
ages from 18 patients with FCD and 14 healthy controls. Vox-
els were initially classified as “lesion” by a Bayesian classifier
that was based on morphometric and first-order features. Le-
sion voxels were then subjected to a GLCM-trained classifier
constructed by using the Fisher discriminant ratio. The 2 clas-
sifiers ultimately selected 3 features (f1, f2, and f11) from among
the 9 features evaluated. Although both visual analysis and
Antel’s twin classifier had perfect specificity, the latter also had
a sensitivity of 83% for the identification of FCD lesions com-

Fig 3. Schematic illustration of the 4-layer hierarchical decision tree used by Lerski et al,17 in which first- and second-order statistical features extracted from T1- and T2-weighted spin-echo
MR images are used to delineate CSF, WM, GM, solid tumor, and edema. Stepwise discriminant analysis is applied at each of the 4 levels: At step I, the analysis reveals that the MGL
of T2-weighted images is best for discriminating CSF and the rest of the regions. At step II, the MGL of T1-weighted and the f9 of T2-weighted images are best for discriminating WM
and the rest of the non-CSF regions; at step III, the MGL of both T2- and proton-attenuation-weighted images and the f9 of T1-weighted images are best for discriminating GM and the
combined edema and tumor regions. At step IV, the MGR of T2-weighted images and the f3 of T1-weighted images and the run-length distance of proton-attenuation images are best
for performing the final decision, that which discriminates between edema and tumor regions.
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pared with 61% when performed by using the standard visual
assessment of MR images.

As indicated earlier, the other objective of the MR imaging
protocol for epilepsy is to obtain high-resolution images of the
hippocampi and the temporal lobes.40 Hippocampal sclerosis
is a common finding in temporal lobe epilepsy.45 Identifica-
tion of hippocampal abnormalities is of substantial interest,
however, particularly with respect to surgical planning. Yu et
al45 evaluated �200 texture features extracted from proton-
attenuation and T2-weighted images of the hippocampi of 23
patients with unilateral temporal lobe epilepsy and in 9
healthy controls. The correct identification of hippocampal
sclerosis with proton-attenuation MR images was achieved by
using f9 and f3, whereas a total of 9 T2-weighted MR image
features were able to correctly classify the hippocampi. In a
subsequent study, Sankar et al46 discovered decreased gradient
and f9 features in patients with epilepsy, connoting a blurring
of the temporopolar WM (65% sensitivity and 100% specific-
ity for hippocampal atrophy versus 17% and 69% with visual
assessment).

Using histologic evidence of hippocampal sclerosis as the
ground truth, Bonilha et al47 evaluated several statistical tex-
tural features extracted from T1-weighted MR images ac-
quired from 19 patients with mesial temporal lobe epilepsy.
Multivariate analysis of variance isolated 8 potentially dis-
criminating features that were subsequently submitted to post
hoc analysis. Almost all 8 were capable of discriminating be-
tween sclerotic and healthy hippocampi. Furthermore, the au-
thors reported no difference between ipsilateral and contralat-
eral hemispheres in the patients with epilepsy. Although we
would not recommend discarding features prematurely or ar-
bitrarily, it is clear that the authors could have benefited from
further data-reduction techniques (and they acknowledge this
limitation). In this context, we would recommend the ap-
proach reported by Freeborough and Fox48 in their MR imag-
ing texture study of patients with Alzheimer disease. Their
initial set of features was also quite large (n � 260), so the
authors first reduced the dimensionality of their feature space
by averaging features for all 4 directions. Then, their consoli-
dated features were subjected to stepwise discriminant analy-
sis by using the forward selection method based on the Mahal-
anobis distance between controls and cases in the training set
and iterated until none of remaining features significantly in-
creased the decision distance.

MS
MS is a chronic inflammatory disease of the central nervous
system that results in demyelination, destruction of oligo-
dendrocytes, and, eventually, long-term functional impair-
ment. MS is a dynamic process with approximately 30%–
40% of RRMS deteriorating to SPMS—a phase marked by a
continuous clinical worsening during a minimum of 6
months.49 While the inflammation and resultant focal
blood-brain barrier disruption associated with RRMS is
readily identified by using gadolinium-enhanced T1-
weighted MR imaging, the value of these conventional MR
imaging markers in the monitoring of SPMS is far less
obvious.50,51

Texture analysis has been proposed as an alternative strat-
egy for identifying active MS lesions and monitoring disease

progression. For example, Yu et al52 discovered that texture
analysis of standard T2-weighted MR images could discrimi-
nate between active and nonactive lesions in a study of 8 pa-
tients with RRMS (4 with active lesions), suggesting that this
technique could be used to minimize or perhaps even obviate
gadolinium-based contrast. Specifically, the authors evaluated
42 first- and second-order statistical textural features and per-
formed LDA to classify lesions into active and nonactive
groups. Applications of the run-length method have been very
limited compared with other methods, yet Yu et al found
that RLM features actually outperformed GLCM features in
the identification of active MS lesions, with RLM features
distinguishing active from inactive lesions with 88% sensi-
tivity and 96% specificity. Conversely, none of the GLCM
features provided any discrimination between lesion
subtypes.

While acute gadolinium enhancement is currently used as a
marker of active inflammation or lesion development, chronic
MS lesions are conventionally identified and counted by using
T2-weighted imaging.53 However, T2 hyperintensity is not
particularly specific for MS and appears to be unsuitable for
identifying incremental changes in NAWM with time.54

Zhang et al23 investigated �200 texture features extracted
from the T2-weighted MR images of 16 patients with RRMS.
The authors selected features on the basis of the greatest dif-
ference between tissue classes (ie, MS lesions versus normal
WM, MS lesions versus NAWM, and normal WM versus
NAWM). The 9 features showing the largest differences and
those that were common to all 3 tissue class pairs were sub-
jected to PCA followed by classification by using ANN. Al-
though the combined set of features outperformed the au-
thors’ GLCM-only classifier for distinguishing MS lesions
from normal WM (100% versus 92%), it was relatively unsuc-
cessful at discriminating normal white matter from NAWM
(58% versus 67%).

More recent MR imaging studies by using magnetization
transfer imaging and, specifically, the MTR can quantify de-
myelination severity, because MTR is reduced in WM le-
sions55 with milder decreases also observed in NAWM and
GM.56,57 Tozer et al58 estimated GLCM textural features ex-
tracted from magnetization transfer MR images acquired
from 23 healthy controls, as well as from 32 patients with
RRMS, 3 patients with SPMS, and 38 patients with CIS, and
investigated the relationship between textural features and the
Expanded Disability Status Scale. While the authors found no
differences between the features extracted from controls and
patients with CIS, several features differed between patients
with MS and the 2 other groups, especially in GM (but also in
WM). Disability scores also correlated significantly, if mod-
estly, with GLCM textural features extracted from GM re-
gions. Texture feature abnormalities in MS suggested there
might be tissue damage beyond classic WM lesions and that
these features show potential for quantifying the severity of
demyelination.

Whereas GLCM and other statistical features appear to be
better suited for identifying active lesions, recent work sug-
gests that spectral texture features may offer greater sensitivity
for monitoring disease progression and evaluating treatment
response. Zhang et al54 recently measured the spatial-
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frequency content of T2-weighted MR images acquired from
20 patients with RRMS who participated in a multicenter clin-
ical trial of oral glatiramer acetate. Participants in this study
were scanned every 2 months for 14 months. Low spatial-
frequency content, as assessed by a modified Stockwell trans-
form, increased in active lesions, followed by a recovery to
normal. This low or “coarse” spatial-frequency content ap-
peared to increase in chronic lesions, coinciding with (but not
necessarily reflecting) the fact that inflammation and demyeli-
nation continue to be observed in chronic MS lesions.59 The
total low spatial-frequency content appears capable of predict-
ing lesion development in disease-prone (normal-appearing)
WM tissue.

New Applications of Texture Analysis and Future
Directions

AIS
At present, thrombolysis with rtPA is the only treatment avail-
able for AIS, yet its use is limited to patients presenting within
4.5 hours of onset, due to the risk of HT.60 Techniques are
clearly needed for the early prediction of hemorrhagic compli-
cations. Given the findings reported for MS studies and as-
suming that the blood-brain barrier disruption before HT is
similar in degree to that occurring in acute MS,61 we hypoth-
esized that there would be differences in the complexity and
homogeneity of HT-prone stroke infarcts. To this end, we
evaluated first-order (MGL, VGL) and 4 2D-GLCM texture
features (f1, f2, f3, and f9) as extracted from postcontrast T1-
weighted spin-echo images acquired from 34 patients with
AIS.25 Contrast and correlation (f2 and f3) were the only 2
features capable of predicting HT and were much more sensi-
tive predictors than conventional visual assessment of post-
contrast T1-weighted images. Surprisingly, the addition of vi-
sual enhancement to either f2 or f3 did not significantly
improve accuracy.

4D Texture Analysis
As previously discussed in the context of brain tumor imaging,
the specificity of statistical texture analysis can be improved by
extending the evaluation of in-plane pixel interrelationships
to include through-plane relationships.37 Woods et al62 re-
cently combined 3D GLCM analysis with DCE imaging of
breast lesions. By examining the time-evolution of contrast
enhancement, in which time constitutes the fourth dimen-
sion, the authors reported impressive differentiation of be-
nign and malignant tumors, which may prove instructive in
future neuro-MR imaging applications. Like texture analysis,
DCE-MR imaging has shown considerable promise in the
characterization of blood-brain barrier integrity in brain tu-
mors,63 MS,64,65 and AIS.66,67 Unlike conventional DCE, how-
ever, the approach of Woods et al62 requires no pharmacoki-
netic modeling. Rather, textural features are computed at each
movement of the analysis window through the 4D dataset—
that is, first from the left to the right of the patient, second
from inferior to superior, third from posterior to anterior and
finally, the window is moved from pregadolinium injection to
the final acquisition in the DCE dataset.

Advanced Pattern-Recognition Techniques
In most of the studies reviewed, the feature classification step
was accomplished by some flavor of LDA. While LDA is a
reasonable strategy for addressing this issue, further sophisti-
cations in feature classification have emerged from the fields of
artificial intelligence and machine learning. In the original 4D
texture analysis study, Woods et al62 developed an ANN clas-
sifier and trained it to classify the DCE data into benign and
malignant tissue classes. Apart from 4D texture, others have
developed ANN23,29 as well as probabilistic neural network
classifiers68 to isolate the most discriminating textural fea-
tures. Although neural network approaches initially require a
great deal of data for training and validation, once this stage
has been completed satisfactorily, these procedures could be
implemented in a clinically reasonable timeframe. Others
have very recently applied support vector machines to dis-
criminate between and among intracranial tumors, delineat-
ing metastases from gliomas and high-grade from low-grade
gliomas with high diagnostic accuracy,28,69 but a more de-
tailed discussion of this approach is beyond the scope of
this review.

Conclusions
Texture analysis is a potentially valuable and versatile tool
in neuro-MR imaging. While we have attempted to empha-
size the potential pitfalls, such as statistical overfitting,
there are many options for coping with texture datasets. We
should also maintain realistic expectations of what is essen-
tially a set of mathematic constructs, and in most applica-
tions, the pathophysiologic interpretation of textural fea-
tures remains an open question. As such, texture analysis
will likely play a supportive rather than a comprehensive
role in the future of medical image interpretation. In some
cases, however, statistical or spectral textural features have
outperformed visual assessment in discriminating between
or among intracranial tumors, as well as in discerning sub-
tle anatomic changes associated with a high risk of seizures
in patients with epilepsy. The robustness of texture analysis
makes it particularly attractive for monitoring disease pro-
gression or treatment response with time, as demonstrated
with MS.
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