










the dose (how many cells to use), assess the survival rate, eval-
uate their migration patterns, check if they find their target site
and home, and optimize the therapeutic time window.31,39 To
illustrate this, Hoehn et al37 transplanted SPIO-labeled stem
cells into the contralateral hemisphere of a mouse displaying
ischemic stroke. T2*-weighted MR images showed the migra-
tion of these cells across the brain from the implantation site to
the edge of an ischemic lesion (Fig 3D�F). This example dem-
onstrates the possibility of following cells in real time, which
may be used to study the therapeutic potential of stem cells in
the future.37

Reporter Genes
The previous 2 sections focused on reporting specific mole-
cules or cells; this section addresses imaging gene function,
which, in contrast to cell tracking, exclusively reports on viable
cells. Reporter gene imaging is a technique in which gene
products (ie, reporter proteins) are imaged in vivo.40,41 Essen-
tially, a reporter gene is transcribed to messenger RNA, which
in turn is translated into a reporter protein (which are far more
abundant in the cell than DNA or RNA). A good reporter

protein must be easy to assay and must not normally be ex-
pressed in the cells of interest or, when encoding for endoge-
nous proteins, must be expressed at much higher levels than
normal.

The gene of interest is unlikely to encode an MR
imaging�visible protein, though the protein of interest may
interact with exogenous reporter molecules.42 Often, the gene
of interest is teamed up with a reporter gene. These genes can
be engineered so that they are both driven by the same pro-
motor. On activation of this promotor (which can be condi-
tional or tissue-specific), the expression of both genes is simul-
taneously enhanced; imaging the reporter protein thus
“reports” on the expression of the gene of interest. The re-
porter protein may produce endogenous contrast or may be
imaged via exogenous reporter molecules.42

Reporter gene imaging is currently in a preclinical stage,
but its potential is enormous. One could monitor gene expres-
sion, track cells in normal and abnormal development, map
dynamic protein interactions, and check cell transplantation
therapy. Taking this 1 step further, one could follow the effects
of gene therapy, in which cells are genetically modified to pro-

Fig 3. In vivo examples of MI studies of the brain by using MR imaging. A�C, MR images of transgenic mice displaying symptoms of AD.A, A fluorine-containing reporter probe with
affinity for senile plaques was intravenously injected and imaged by 19F and 1H-MR imaging. B, Proton MR image before injection of the reporter probe. C, Merged proton and fluorine
image after injection of the reporter probe, indicating the anatomic locations of the reporter molecule in the brain.26 D�F, Cellular imaging of migrating stem cells in a mouse model of
ischemic stroke. E, Stem cells are labeled with ultrasmall SPIO particles and transplanted into the contralateral hemisphere.F, They migrate from the implantation sites (yellow arrows)
along the corpus callosum toward the ischemic borderzone (migration shown as red arrows).37 G�I, In vivo reporter gene imaging by using CEST reporter proteins. The left hemisphere
of a mouse brain was injected with glioma cells expressing LRP (a CEST agent); the right hemisphere was injected with control tumor cells. H, Anatomic MR image of the brain. I, CEST
signal-intensity-difference map superimposed on the anatomic image, indicating the LRP-expressing tumorxenograft.34
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duce a therapeutic effect.41,42 Reporter gene imaging is com-
monly used in the nuclear and optical imaging field, with
green fluorescent protein43 and luciferase44 as prominent ex-
amples, but MR imaging has started claiming a place on the
stage as well, by virtue of its noninvasive nature and whole-
body coverage.

Needless to say, for MR reporter gene imaging, the reporter
protein needs to be MR imaging�detectable, and common
strategies are outlined in recent reviews.41,42,45 Reporter genes
may encode for artificial proteins, which are detectable by
CEST imaging (Fig 3G�I),34 but most MR imaging reporter
systems are based on the accumulation of iron, circumventing
the administration of exogenous contrast agents. When re-
porter genes overexpress proteins such as ferritin,46,47 the
transferrin receptor,48 or MagA49 at high levels, they cause a
local buildup of iron, which leads to enhanced negative con-
trast in T2- or T2*-weighted images. This principle has been
demonstrated by Genove et al,47 who visualized gene expres-
sion by using genetically modified replication-defective ad-
enoviruses carrying the genes for the light-chain or heavy-
chain subunits of ferritin. They injected the adenoviruses into
the striatum of a living mouse, which led to the local overex-
pression of ferritin and the accumulation of endogenous iron.
This resulted in enhanced negative contrast in T2-weighted
MR images, which was visible for weeks.

The field of MR reporter gene imaging is developing at a
steady pace, but before it becomes a mainstream clinical tool,
it has to overcome several issues. The efficiency of gene trans-
fer is currently very modest, which, in combination with low
MR imaging sensitivity, makes MR reporter imaging a chal-
lenge. Reporter gene imaging (in combination with gene ther-
apy) often uses viral-based vectors to package genes and a
delivery device to pass them to the target organ. In this respect,
the method is not strictly noninvasive. Current applications of
reporter gene imaging are, therefore, mostly confined to small
animal models, though clinical applications are anticipated in
the future, most likely as tools to visualize gene therapy.

Current Developments
The field of MI is developing in several directions. Imaging
modalities perform better, molecular biologists construct in-
genious reporter genes and transgenic mice, while chemists
improve contrast agents20,50 and create multimodal reporter
molecules.

There is a continuous effort to increase the field strengths
of human scanners, and these high-field magnets are making
their way into the clinic. The most commonly used clinical
scanners operate at field strengths of 1.5T, while 3T is regarded
as high-field; but ultra-high-field magnets at 7T are also used
for patient studies. Because the MR imaging signal intensity is
proportional to the magnetic field strength, using high-field
scanners improves the sensitivity and enhances the signal in-
tensity–to-noise ratio, improving anatomic and functional
imaging.51 A higher magnetic field also increases the spectral
resolution, which is an additional benefit for 1H-MR spectros-
copy and CEST-based imaging. Unfortunately, high-field
magnets do not come without expense: Increased magnetic
susceptibility effects, field inhomogeneity, and energy deposi-
tion pose technical challenges, but these are partly overcome

by using optimized coils, fast and parallel imaging, and refo-
cusing flip angles.52,53

With regard to MI, high-field scanners can detect lower
concentrations of reporter molecules, which decrease toxicity
issues. This is particularly the case for iron oxide�based par-
ticles, heteronuclear contrast agents, and CEST agents. On the
other hand, the current lanthanide-based contrast agents do
not perform as well at high fields, and their relaxation behavior
should be significantly improved.20 Regardless of the field
strength there is a continuous effort to tailor and improve
pulse sequences, such as ultrafast imaging sequences and cre-
ating positive contrast for SPIO particles.19

Outlook
The road to MR imaging�based MI has been a long one. MR
imaging�based contrast agents are inherently far less sensitive
than radiotracers; this difference makes them more likely to
fail due to sensitivity or toxicity problems. Nevertheless, the
advantage of providing anatomic, physiologic, and molecular
or cellular information during a single examination is so great
that research in this area is booming. In the near future, we
anticipate that fluorine-based reporter molecules in conjunc-
tion with MR imaging at higher fields holds great promise,
combining hot-spot imaging and sensitivity. In contrast to
fluorine-based radiotracers, MR reporter probes are relatively
long-lived and could be imaged on a regular basis while avoid-
ing excessive ionizing radiation. While BBB research is in fifth
gear, MI of the brain is already in use for pathologies with a
possible compromised BBB, such as cerebrovascular diseases,
inflammatory conditions, and gliomas. Without the need to
cross the BBB, this approach could take full advantage of cur-
rent developments in the field.

Also, alternative therapies for neurologic disorders, such as
gene therapy and stem cell transplantation, are active areas of
research, and we expect that MI will play an essential role in
the development of these therapies, for example, by tracing
labeled stem cells or by developing a common platform for
treatment and diagnostics. Examples of this common ap-
proach are already known from cancer research, in which li-
posomal particles that target tumor sites and contain antican-
cer drugs and MR imaging–visible contrast agents to monitor
the treatment response have been used.

Many radiologists may regard MI as science fiction, but
they should be aware that this field develops at a fast pace.
Although currently most research is applied in animal models,
the first radiologic studies in humans have already been per-
formed. It is generally believed that MI based on radiologic
techniques will be introduced in the clinical arena within the
next few years. However, the clinical implementation of MR
imaging�based MI will only occur when academic radiolo-
gists are actively involved in research programs in which they
master data collection and interpretation of MI images. This
could be achieved by providing MI courses to residents, orga-
nizing postgraduate courses for radiologists, and by creating
MI fellowships. Radiologists could also assist chemists and
biochemists in the development of reporter probes to advance
clinical applications. Seeing that MI is on the brink of leaping
to the clinic, radiologists should prepare themselves now to
join that jump in the near future.
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