Percutaneous Balloon Kyphoplasty with the Patient under Intravenous Analgesia and Sedation: A Feasibility Study

M. Mohr, D. Pillich, M. Kirsch, J.U. Mueller, S. Fleck, N. Hosten and S. Langner

AJNR Am J Neuroradiol 2011, 32 (4) 649-653
doi: https://doi.org/10.3174/ajnr.A2345
http://www.ajnr.org/content/32/4/649
Percutaneous Balloon Kyphoplasty with the Patient under Intravenous Analgesia and Sedation: A Feasibility Study

BACKGROUND AND PURPOSE: Kyphoplasty is a minimally invasive procedure for the treatment of malignant or osteoporotic vertebral compression fractures, normally performed with the patient under general anesthesia. This may cause a therapeutic dilemma because these patients often have a very high risk for general anesthesia due to concomitant diseases. The aim of this study was to evaluate the safety and feasibility of percutaneous kyphoplasty by using IV anesthesia and sedation with midazolam and piritramide.

MATERIALS AND METHODS: From June 2007 to June 2009, we prospectively included 133 patients (77 women, 56 men; mean age, 69.18 ± 11.45 years) who were referred for BKP. Kyphoplasty was always performed under fluoroscopic guidance with a biplane angiographic system by using a transpedicular or extrapedicular approach. The individual anesthesia risk was assessed by using the ASA criteria. All procedures were performed with the patient under IV anesthesia and sedation with fractionated administration of midazolam and piritramide. Pain was assessed before and after treatment by using a VAS.

RESULTS: Ninety-nine patients (74.4%) had a significantly increased risk for general anesthesia (ASA score, ≥ 3). A total of 162 kyphoplasty procedures were performed. The mean amounts of midazolam and piritramide used were 11.3 ± 4.38 mg and 11.8 ± 3.98 mg, respectively. No complications related to IV anesthesia and sedation occurred. Periprocedural pain management was rated as sufficient, and all patients would undergo the procedure again.

CONCLUSIONS: Percutaneous BKP with the patient under IV anesthesia and sedation with midazolam and piritramide is a safe and feasible method for treating vertebral compression fractures in patients with an increased risk for general anesthesia.

ABBREVIATIONS: ASA = American Society of Anesthesiologists; BKP = balloon kyphoplasty; IV = intravenous; VAS = visual analog scale; VB = vertebral body; VP = vertebroplasty
ment or narrowing of the spinal canal, and vertebral fractures associated with neurologic deficits.1,13

The preinterventional evaluation included medical history and clinical examination with assessment of the neurologic status, conventional radiography of the affected spinal segment in 2 planes, and a CT scan of the vertebral level for evaluation of posterior stability. If the age of the fracture was unknown or if several osteoporotic compression fractures were present on plain radiographs, additional MR imaging with fat-saturated T2-weighted imaging was performed to detect bone marrow edema as an indicator of a recent compression fracture.2

Each patient’s physical status was assessed before the intervention to estimate the anesthesia risk according to the criteria of the ASA. Evaluation of pain quality and intensity was performed by using a VAS.

All interventions were performed by using a biplane angiography unit (Integris IV; Philips Healthcare, Best, the Netherlands). Kyphoplasty was bilateral transpedicular for lumbar vertebrae and transpedicular or extrapedicular for thoracic fractures. Each patient received a single IV infusion of ampicillin/sublactam prior to the intervention. All patients were positioned prone, with the spine extended by placing supports under the thorax and the pelvis to facilitate augmentation of the collapsed vertebra.1,4,15

Ten milliliters of lidocaine 1% was infiltrated from the skin to the periosteum of the targeted pedicle. BKP was performed by using a standard kyphoplasty kit (KyphoPak Tray; Kyphon, Sunnyvale, California) following published guidelines.4 In patients with a vertebral fracture of other etiology than osteoporosis, a biopsy was obtained for histologic work-up (Table).

BKP was performed with the patient under conscious sedation with IV administration of piritramide and midazolam for anesthesia and sedation in all patients. During intervention, continuous pulse oxymetry and electrocardiography and noninvasive blood pressure measurements at 5-minute intervals monitored patients. All patients were given oxygen via a facemask at a flow rate of 2 L/min. This was increased at the discretion of the interventional radiologist if it was deemed necessary. Peri-interventionally, the depth of sedation was assessed by using surrogate parameters including pain-related reactions such as movements or facial expressions and physiologic parameters such as heart rate, blood pressure, and respiratory rate. With respect to these parameters, the administration of piritramide and midazolam was adjusted as needed. The drugs were administered separately in 0.5-mg intervals, followed by a slow saline flush of 10 mL after each medication.

Monitoring was continued on the ward for 6 hours on completion of the intervention. The patient’s neurologic status was assessed immediately after the intervention, at 6 hours, and the next day. On the day after the intervention, patients were asked to rate on a 5-point scale (0 = maximum pain, 5 = no pain) whether pain medication during intervention was sufficient and whether they would undergo the procedure again. Postinterventional pain was evaluated by using the VAS score, and conventional radiographs in 2 planes of the treated vertebrae were obtained.

Statistical analysis was performed by using the Student t test and the χ² test. For statistical analysis, patients were divided in 2 groups by ASA criteria (ASA group I = ASA < 3; ASA group II = ASA ≥ 3) and by age (age group I, <65 years; age group II, ≥65 years). Total dose of piritramide and midazolam versus age and ASA score was analyzed by using the correlations test. The significance of the correlation coefficient r was calculated, and P ≤ .05 was considered significant. We performed all statistical analysis by using Version 14 of the Statistical Package for the Social Sciences (SPSS, Chicago, Illinois).

Results

According to ASA criteria, 74.4% of patients (n = 99) in the cohort had a markedly increased surgical risk (ASA score, ≥3). In these patients, BKP was performed on a total of 162 vertebrae. No more than 3 vertebral bodies were treated per session (Table). The number of vertebral levels treated per session was as follows: 1 vertebral level in 85% of cases (n = 113), 2 in 8.3% (n = 11), and 3 vertebral bodies in 6.8% of patients (n = 9). The underlying cause of vertebral fractures was osteoporosis in 64.7% (n = 86), metastases of known primary in 16.5% (n = 22), metastases of unknown primary in 4.5% (n = 6), plasmacytoma in 11.3% (n = 15), and lymphoma in 3% (n = 4).

The average duration of all interventions was 64.2 ± 25.6 minutes. The mean duration by number of vertebrae treated per intervention was 57.9 ± 24.2 minutes, 65.6 ± 28.8 minutes, and 70.0 ± 24.9 minutes for 1, 2, and 3 vertebral bodies, respectively.

Two interventions had to be discontinued (1.89%). One patient had a concomitant clavicular fracture, which precluded prone positioning; in the other case, no adequate anesthesia and sedation were achieved, and the attempt was aborted following local anesthesia. This was related to anesthetic abuse, which was discovered afterward.

The mean amounts of piritramide and midazolam admin-

<table>
<thead>
<tr>
<th>Demographic and peri-interventional data of the patient cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
</tr>
<tr>
<td>No. of patients</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td>Men</td>
</tr>
<tr>
<td>Mean age (yr)</td>
</tr>
<tr>
<td>ASA Score</td>
</tr>
<tr>
<td>ASA 1</td>
</tr>
<tr>
<td>ASA 2</td>
</tr>
<tr>
<td>ASA 3</td>
</tr>
<tr>
<td>ASA 4</td>
</tr>
<tr>
<td>No. of vertebrae treated</td>
</tr>
<tr>
<td>1 VB per session</td>
</tr>
<tr>
<td>2 VBs per session</td>
</tr>
<tr>
<td>3 VBs per session</td>
</tr>
<tr>
<td>Time of intervention (mean min)</td>
</tr>
<tr>
<td>1 VB treated per session</td>
</tr>
<tr>
<td>2 VBs treated per session</td>
</tr>
<tr>
<td>3 VBs treated per session</td>
</tr>
<tr>
<td>Amount of piritramid (mg) (mean total)</td>
</tr>
<tr>
<td>1 VB</td>
</tr>
<tr>
<td>2 VBs</td>
</tr>
<tr>
<td>3 VBs</td>
</tr>
<tr>
<td>Amount of midazolam (mg) (mean total)</td>
</tr>
<tr>
<td>1 VB</td>
</tr>
<tr>
<td>2 VBs</td>
</tr>
<tr>
<td>3 VBs</td>
</tr>
<tr>
<td>Etiology of vertebral fracture</td>
</tr>
<tr>
<td>Osteoporosis</td>
</tr>
<tr>
<td>Metastasis of unknown primary</td>
</tr>
<tr>
<td>Metastasis of known primary</td>
</tr>
<tr>
<td>Plasmacytoma</td>
</tr>
<tr>
<td>Lymphoma</td>
</tr>
</tbody>
</table>
midazolam and piritramide was not significant for both age
not observed either for piritramide (r ASA groups with respect to the amounts of piritramide and
midazolam (r ASA). However, the difference for the mean amount of
vertebrae treated were the following: 11.41 ± 4.29 mg of piritramide and 10.8 ± 4.4 mg of midazolam for 1 vertebra, 12.6 ± 3.0 and 11.9 ± 3.8 mg for 2, and 13.11 ± 3.4 and 14.0 ± 3.9 mg for 3 vertebrae. Demographic and peri-interventional
details are provided in the Table. There was a significant cor-
relation between age and the mean amount of piritramide (r =
-0.334, P = .01; Fig 1A) and midazolam (r = -0.358, P = .01;
Fig 1B). However, the difference for the mean amount of
midazolam and piritramide was not significant for both age
groups (P = .63). A significant correlation for ASA score was
not observed either for piritramide (r = -0.09, P = .29) or for
midazolam (r = -0.04, P = .64). The difference between both
ASA groups with respect to the amounts of piritramide and
midazolam needed was not significant (P = .66). No compli-
cations related to anesthesia and sedation were observed.
There was no neurologic deterioration in any of the patients
after the intervention, and clinically relevant cement leakage
was not observed.

The initial mean VAS score was 8.3 (median, 8; range, 7–9).
On follow-up the next day, there was significant reduction,
with a mean VAS score of 2.4 (median, 3; range, 1–5; P < .05).
According to the questionnaire, all patients would undergo
the procedure again and rated peri-interventional anesthesia
as sufficient.

Discussion
Since it was first described for treating osteoporotic spinal
compression fractures in 2001, the indication for BKP has ex-
panded considerably, now also including traumatic and
pathologic fractures as well as spinal metastasis, with the risk
of vertebral fracture or lesions associated with multiple my-
eloma1-3 leading to an increased number of procedures every
year.

Despite 2 recent reports,16,17 the rapid pain relief afforded
by both VP and BKP has been confirmed in numerous stud-
ies,18 and this effect is attributed to the immobilization of
the fracture fragments by the injected cement.4,9,19 Published data
suggest that the 2 interventional techniques are equally effec-
tive in terms of pain relief and patient mobility.4,20 However,
several studies indicate that BKP has a lower risk of clinically
relevant cement leakage.21-23

Our study demonstrates that BKP with the patient under
conscious sedation by using piritramide and midazolam is a
safe and feasible method, particularly with regard to patients
with increased risk for general anesthesia. Therefore, BKP be-
comes a true minimally invasive percutaneous treatment pro-
cedure like VP.

Unlike VP, most investigators prefer to perform BKP with
the patient under general anesthesia because of the pain asso-
ciated with balloon inflation and the longer duration of the
intervention compared with VP.5,22,24 There are numerous re-
ports in the literature about pain management during VP,
ranging from local infiltration anesthesia to general anesthesia
in the operating room.24,25 Hierholzer et al3 initially per-
formed VP by using general anesthesia. On the basis of their
experience, they then used IV neuroleptanalgesia within the
course of the procedure. They stated that this technique is less
stressful and demanding. One limitation of their study is that
the authors do not mention the medication used within the
course of the procedure.

The use of midazolam for conscious sedation is well-estab-
lished in interventional radiologic procedures.26,27 The use of
higher amounts carries the risk of apnea,28 which can be spec-
ifically treated with flumazenil.26,28 In our study, we therefore
titrated midazolam with respect to the surrogate parameters
for the depth of sedation. The overall mean amount of mida-
zolam was 11.3 ± 4.38 mg, which is slightly above the amounts
reported in the literature for VP.3,27 This might be related to the
pain associated with the inflation of the balloons.22,24 In a
recent study, a protocol of titrated conscious sedation with
fentanyl and propofol and monitoring of vital parameters with
good tolerance for the method has been described.10 Propofol
has to be applied by continuous infusion; and compared with

---

Fig 1. A. Mean amount of piritramide for anesthesia during conscious sedation. The x-axis represents the age (years); the y-axis, the amount of piritramide (milligrams) used. The correlation was significant (r = -0.334, P = .01). B. Mean amount of midazolam for conscious sedation. The x-axis represents the age (years); the y-axis, the amount of midazolam (milligrams) used. The correlation was significant (r = -0.358, P = .01).
midazolam, it is not anxiolytic. On the other hand, propofol carries a risk for upper airway collapse and also relevant respiratory depression.24

Piritramide is also well-established in radiologic interventional procedures.26-27 The amounts used for BKP in our study are within the range reported in the literature for VP.27 An advantage of conscious sedation with piritramide and midazolam is the presence of flumazenil and naloxone as antagonists for benzodiazepines and opioids, respectively. However, resuscitation procedures or medical antagonization were not necessary in our patient cohort. With this medication, conscious sedation and anesthesia were rated as sufficient by all patients (mean postinterventional score, 4.7; range, 4–5), and all patients would undergo the procedure again.

Using a biplane angiography unit, we achieved an average intervention time for a single vertebral body of 57.9 ± 24.2 minutes. This is in concordance with the results reported in other studies. In a prospective study, Wilhelm et al29 reported an average room time of 63 minutes for single-level BKP with the patient under general anesthesia in a similar study population. In our opinion, biplane fluoroscopy significantly contributed to the reduced intervention time, because planning of the access path and introduction of the working cannula and the balloons are significantly improved compared with single-plane fluoroscopy often used in the operating room. In addition, the intervention time mentioned by Wilhelm et al did not include the time required for introduction and reversal of anesthesia. This extra time is not needed when BKP is performed with the patient under conscious sedation.

Complications of BKP are related to leakage into the spinal canal or other related structures and are not usually clinically relevant.30-32 Severe complications, such as infections, neural damage, or pulmonary embolism are extremely uncommon.33 For technical reasons, inadvertent cement leakage is more common in VP compared with kyphoplasty.21 This is supported by the results of our study. We observed no clinically relevant leakage in a study population comparable with the series published in the literature in terms of age, sex, and location of the affected vertebrae.21,34

Our study has a few limitations that should be mentioned. First, long-term results of pain reduction and vertebral height restoration are lacking. However, the aim of our study was to evaluate the clinical feasibility of BKP with the patient under conscious sedation by using piritramide and midazolam. Therefore, no patient was followed up for >1 year, and we did not obtain data of height restoration of the treated VBs or reduction of kyphosis. Second, the number of patients in whom 2 or 3 VBs were treated is relatively small for the evaluation of statistical differences regarding intervention times and analgesic and sedative requirements for multilevel BKP. In addition, the study population was heterogeneous in terms of fracture cause. While this heterogeneity may impair comparability between the groups, it may, on the other hand, reflect the patient population likely to be candidates for BKP in the clinical setting and is shared by other recent studies.3,8,21,34

Conclusions

BKP with conscious sedation by using piritramide and midazolam is a safe and feasible method for minimally invasive treatment of metastatic and osteoporotic vertebral fractures in patients with increased anesthesia risk.

References