Angiographic CT with Intravenous Contrast Injection Compared with Conventional Rotational Angiography in the Diagnostic Work-Up of Cerebral Aneurysms

AJNR Am J Neuroradiol 2012, 33 (5) 982-987
doi: https://doi.org/10.3174/ajnr.A2883
http://www.ajnr.org/content/33/5/982
The prevalence of cerebral aneurysms is considered approxi-
\[4\%–7\%\] of the population.1–3 Because of the ever-
widening use of neuroimaging techniques, the number of in-
cidentally found and subsequently treated aneurysms is rising.\footnote{The higher spatial resolution of injection is a recently described method capable of visualiza-
\[18\]tion of intracranial vessels.18} Before interventional therapy, the acquisition of accurate data on aneurysm geometry is of crucial importance. Precise knowledge of the aneurysm neck and originating arteries is a key factor for deciding whether to perform microsurgical clipping or endovascular coiling. The criterion standard for the assessment of size and geometry of intracranial aneurysms is still conventional angiography,4 especially 3D-DSA.5–7 How-
ever, disadvantages of conventional diagnostic angiography are the cost and its invasiveness, even if the complication rate can be considered low at experienced centers.8 Noninvasive methods for aneurysm visualization such as CTA or MRA9–14 have indeed benefited from more and more improved tech-
niques, but they have not yet reached the accuracy of conventional angiography. The purpose of this study was to evaluate the diagnostic accuracy of ivACT in the assessment of intracranial aneurysms compared with 3D-DSA.

MATERIALS AND METHODS: We included 13 patients with 15 incidental unruptured saccular aneu-
\[\text{yersms} scheduled for diagnostic angiographic work-up in our study. In each patient, we performed an ivACT and a conventional angiography including a 3D rotational run. During postprocessing, MPR images were generated for each technique. Maximal aneurysm diameter, neck diameter, aneurysm height, maximum width, bulge height, parent artery diameter, and angle between the parent artery and aneurysm apex were measured for each aneurysm.

RESULTS: 3D-DSA and ivACT both provided images of high quality without artificial disturbances (ie, motion artifacts). Measurements of all parameters resulted in comparable values for both modalities with a strong correlation (\(P \leq .001\)).

CONCLUSIONS: ivACT is feasible for the noninvasive visualization of saccular cerebral aneurysms and may provide reliable diagnostic information for the assessment of aneurysm size and geometry comparable with conventional intra-arterial 3D rotational angiography. These preliminary results might be a first promising step to replacing conventional angiography in preinterventional aneurysm imaging.

ABBREVIATIONS: ACA A1 = anterior cerebral artery proximal to the origin of the anterior communicating artery; ACT = angiographic CT; FPCT = flat-detector CT; ivACT = ACT with intravenous contrast medium injection; MPR = multiplanar reformation; MSCT = multissection CT; 3D-DSA = 3D rotational digital subtraction angiography
Correlation of the mean values of aneurysm dimensions measured by 3D-DSA and ivACT

<table>
<thead>
<tr>
<th></th>
<th>3D-DSA (mean)</th>
<th>ivACT (mean)</th>
<th>Pearson Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum diameter</td>
<td>1.414 ± 1.035 cm</td>
<td>1.413 ± 1.027 cm</td>
<td>0.999</td>
</tr>
<tr>
<td>Neck diameter</td>
<td>0.651 ± 0.607 cm</td>
<td>0.655 ± 0.585 cm</td>
<td>0.999</td>
</tr>
<tr>
<td>Aneurysm height</td>
<td>1.077 ± 0.780 cm</td>
<td>1.087 ± 0.776 cm</td>
<td>0.998</td>
</tr>
<tr>
<td>Maximum width</td>
<td>1.055 ± 0.846 cm</td>
<td>1.064 ± 0.830 cm</td>
<td>1.000</td>
</tr>
<tr>
<td>Bulge height</td>
<td>0.405 ± 0.251 cm</td>
<td>0.404 ± 0.246 cm</td>
<td>0.990</td>
</tr>
<tr>
<td>Parent artery diameter</td>
<td>0.338 ± 0.110 cm</td>
<td>0.339 ± 0.108 cm</td>
<td>0.950</td>
</tr>
<tr>
<td>Aneurysm/artery angle (SD)</td>
<td>103.333° (43.322°)</td>
<td>103.667° (43.956°)</td>
<td>0.997</td>
</tr>
</tbody>
</table>

ardography/CTA, Siemens) to generate MPR images. The whole angiographic investigation required about 60 mL of contrast material (iomepol, Imeron 300; Bracco Imaging, Konstanz, Germany).

ivACT
ACT in combination with intravenous contrast medium injection was performed the day after DSA. For image acquisition, we used a dedicated FPCT program (a 10-second DSA program) with a native and a contrast-enhanced run. We applied the “bolus-watching” technique,20 which allows the beginning of data acquisition exactly at the point when the arteries have the best contrast material opacification. Thirty milliliters of contrast agent (Imeron 300) was injected into an antecubital vein at a rate of 5 mL/s by using a power injector (Accusure). A 60-mL injection of saline chaser was performed the day after DSA. For image acquisition, we used a ivACT. We applied the “bolus-watching” technique, which allows the beginning of data acquisition exactly at the point when the arteries have the best contrast material opacification. Thirty milliliters of contrast agent (Imeron 300) was injected into an antecubital vein at a rate of 5 mL/s by using a power injector (Accusure). A 60-mL injection of saline chaser was performed the day after DSA. For image acquisition, we used a ivACT.

Postprocessing and Image Analysis
For each technique, image reconstructions were performed by using commercially available software (Dynacc, Siemens). The software allows the reconstruction of different image impressions. The modes “native fill,” kernel type “HU,” and image impression “normal” were used. All 3D-DSA and ivACT data were anonymized and stored in random order. For image analysis, the volumetric data were loaded into the 3D application to perform MPRs. MPR reconstructions of each aneurysm were generated in transverse, coronal, and sagittal orientations with a section thickness of 0.5 mm. All images were independently evaluated by 2 experienced neuroradiologists in consensus reading. Measurements were performed on the workstation with an electronic caliper. We recorded the following, previously described20 dimensions of aneurysm geometry: maximal diameter, neck diameter, aneurysm height, maximum width, and bulge height (the distance of the neck plane to the plane of maximal diameter). In addition, the parent artery diameter and the angle between parent artery and aneurysm apex were measured.

Statistical analysis was performed by using the Statistical Package for the Social Sciences (SPSS, Chicago, Illinois). The mean values and the SDs were calculated for each dimension. For analysis of the correlation between the variables, a linear 2-sided correlation (Pearson r) test was performed. Significance level was set as P ≤ .001.

Results
The patient population consisted of 10 women and 3 men for a total of 13 patients with 15 cerebral aneurysms. The average age of the patients was 61.3 ± 14.8 years (range, 23–76 years). Twelve (80%) aneurysms were in the anterior and 3 aneurysms (20%) were in the posterior circulation. The mean values and SDs of each aneurysm parameter measured for both modalities are shown in the Table. The highest correlation (r = 1.000) was found for the maximal aneurysm width; the lowest, for the parent artery diameter (r = 0.950). The Pearson correlation coefficient reached a significant level in all measured variables (P ≤ .001).

Representative Cases
Case 1. A 59-year-old patient presented with nausea and diplopia. MR imaging revealed bilateral giant aneurysms of the distal part of internal carotid artery with an ophthalmoplegic effect on the left side. Angiographic images before successful endovascular treatment by flow-diverter stent deployment are shown in Fig 1. The preinterventional assessment of the appropriate stent length was accurately determined on ivACT.

Case 2. A 70-year-old patient underwent MR imaging because of trigeminal affection. As an incidental finding, an aneurysm of the ACA was revealed (Fig 2), which was successfully treated by endovascular coiling. In ivACT, both A1 segments of the ACA were visible in 1 acquisition step in contrast to 3D-DSA, where a second contralateral contrast agent injection was needed.

Case 3. A broad-based aneurysm of the right-sided pericallosal artery was demonstrated, which was incidentally found by MR imaging, actually performed because of headache in a 61-year-old patient (Fig 3). Further treatment was surgical clipping.

Case 4. MR imaging of a 58-year-old patient revealed a basilar tip aneurysm. The further angiographic aneurysm evaluation is shown in Fig 4. This case demonstrates that aneurysm evaluation by ivACT is also viable in the posterior circulation.

Discussion
Conventional angiography with 3D-DSA is considered the criterion standard for aneurysm evaluation.5–7 Although noninvasive aneurysm visualization with CTA or MRA has improved by technical advances recently, the accuracy of conventional angiography, especially in the visualization of aneurysm geometry, has not yet been achieved.15–17,21 CTA is frequently used as a noninvasive, broadly available, fast, and feasible tool, especially in acute settings for aneurysm detection,22 but there are still limitations through bone artifacts near the skull base and its confined spatial resolution. MRA can provide thin source images of intracranial vessels, but the disadvantages are a long acquisition time as well as artifacts by patient movement or flow phenomena.15

With the newly introduced combination of FPCT with in-
A new tool for cerebral aneurysm visualization might be available. Its feasibility concerning vessel visualization has been shown in animal models so far. The aim of our study was to evaluate the accuracy of ivACT in assessing aneurysms in humans compared with 3D-DSA.

For both modalities, we compared the following, previously published indices of aneurysm dimensions: maximal diameter, neck diameter, aneurysm height, maximum width, bulge height, parent artery diameter, and the angle between the parent artery and the aneurysm apex. The results showed a strong significant correlation between both techniques.

As a major advantage, ivACT is a noninvasive procedure in contrast to conventional angiography. Complications of conventional angiography (ie, cerebrovascular ischemic events and so forth) can be avoided, and hospitalization of the patients is not necessary. Thus the examinations can be performed on an outpatient basis. The acquisition of ivACT is less time-consuming than DSA, and in addition, the whole cerebral circulation can be evaluated in 1 step (Fig 5), which might...
be especially helpful in the visualization of ≥2 cerebral aneurysms at the same time.

However, the accuracy for detecting additional aneurysms by using ivACT was not the aim of this study and would probably need a larger number of patients. The ivACT nicely illustrates aneurysms located within the anterior as well as posterior circulation without limitations in separating vessels from bony structures due to beam-hardening artifacts (i.e., near the skull base). In comparison with CTA, the promising issue of this novel technique seems to be the option to generate images with a superior spatial resolution and a reduced interference of bony structures so that these reported technical limitations of CTA might be avoided. Comparative studies between CTA and ivACT are planned, now that the feasibility of ivACT in

Fig 2. An aneurysm of the ACA is presented by maximum-intensity-projection reconstructions of ivACT (A) and 3D-DSA (B). With ivACT, also the right-sided A1 and A2 segments of the ACA are highlighted in contrast to 3D-DSA.

Fig 3. Correlating maximum-intensity-projection reconstructions of ivACT (A) and 3D-DSA (B) both show a broad-based aneurysm of the right-sided pericallosal artery. 3D-DSA offers some more clarity for treatment, but the image information gained by ivACT seems sufficient for treatment planning.

Fig 4. A small basilar tip aneurysm is demonstrated by maximum-intensity-projection reconstructions of ivACT (A) and 3D-DSA (B). Both techniques seem to provide nearly identical images of the aneurysm.
Aneurysm in the bifurcation of the right middle cerebral artery is revealed.

Intracranial vessels in the anteroposterior view by only 1 contrast agent injection. An aneurysm in the bifurcation of the right middle cerebral artery is revealed.

986 Go¨litz

Effective patient dose of 3D-DSA compared with the biplane DSA series (1.2 versus 1 mSv) (T. Struffert).

Conclusions

Our preliminary results indicate that ivACT could function as a noninvasive tool for the evaluation of unruptured saccular cerebral aneurysms with quality comparable with 3D rotational angiography. Potentially this might be a first step toward new standards in the preinterventional visualization of incidentally found aneurysms.

Certainly our study is limited by the small number of patients, but the number seems sufficient to show the feasibility and accuracy of ivACT and to provide a good impression of this new technique.

As another shortcoming, the mean aneurysm diameter in our study was relatively high, and only a few of the small and smallest aneurysms were included so that further validation with an increased number of cases with such small aneurysms (<3 mm) should be added to our results. Because we included only incidental aneurysms, an objective for further investigations could be cases with acute SAH for proving whether ivACT can demonstrate similar results in cases with ruptured aneurysms. Additionally, the ability to perform ivACT is restricted by the patient population. Patient cooperation is of crucial importance to obtain usable images. Restless or noncompliant patients, such as those who are elderly or infirm or have SAH, might not be suitable for ivACT. Further objectives could be a more optimized injection of contrast agent and better postprocessing programs.

References
