Simple MRI Metrics Contribute to Optimal Care of the Patient with Multiple Sclerosis

J.H. Simon, R.A. Bermel and R.A. Rudick

AJNR Am J Neuroradiol 2014, 35 (5) 831-832
doi: https://doi.org/10.3174/ajnr.A3937
http://www.ajnr.org/content/35/5/831

This information is current as of August 10, 2024.
Multiple Sclerosis
Optimal Care of the Patient with

EDITORIAL

http://dx.doi.org/10.3174/ajnr.A3937


EDITORIAL

Simple MRI Metrics Contribute to Optimal Care of the Patient with Multiple Sclerosis

J.H. Simon, R.A. Bermel, and R.A. Rudick

MR imaging has been a critical element in multiple sclerosis care because it has been the basis, along with clinical measures, for testing treatment efficacy. MR imaging serves as a primary outcome measure in phase II and a secondary outcome measure in phase III clinical trials in MS. There are now 10 approved MS disease-modifying drugs, all showing measureable impact in population studies on inflammatory disease as indicated by new T2 hyperintense and/or gadolinium-enhancing lesions on MR imaging. MR imaging initially impacted the field as an important component of diagnostic criteria, in part because MR imaging is much more sensitive to early MS than are clinical features. For similar reasons, clinicians have embraced the practice of monitoring subclinical MR imaging activity for treatment decisions, though formal criteria for an actionable response to MR imaging activity in an individual patient have been limited (Online Table 1). MR imaging monitoring is also critical for detecting complications of therapy—for example, infection (progressive multifocal leukoencephalopathy) or inflammation (immune reconstitution inflammatory syndrome).

Several recent initiatives by the MS community have addressed the concept of individualized, more tailored, and sometimes more aggressive early treatment. Treatment escalation has only recently become feasible with the introduction of new, potentially stronger MS treatments based on differing mechanisms and molecular targets. As a result, MR imaging activity will be increasingly used in clinical practice to determine whether patients are responding to treatment or may benefit from a change in treatment or escalation to higher-risk therapy (On-line Table 1). For example, the Canadian MS Working Group guidelines were updated in 2013, on the basis of combinations of relapse, disability, and MR imaging scores, for recommendations classified as low, medium, or high concern. The Rio score, developed in Barcelona, was modified recently on the basis of a validation study to include only MR imaging activity and relapse indicators. Enhancing lesions, followed by relapses and new T2 lesions during the initial 2 years, were the best predictors of disability 15 years later in treated (distinct from placebo) patients in the interferon (IFN)-β-1a trial, suggesting that persistent inflammatory disease activity in patients on IFN reflected nonresponse to therapy. An analysis by Dobson et al from 11 studies with IFN-β treatment found that those who develop new MR imaging lesions on IFN-β within 2 years of starting therapy are at significantly higher risk of future relapses and/or disability worsening and that these patients can be identified after just 6–12 months of treatment.

The simple MR imaging measures of focal T2 hyperintense and enhancing lesions seem to contribute strongly to relapse and disability outcomes and contribute significantly to brain atrophy, a surrogate of disability. This association is highlighted in a recent meta-analysis by Sormani et al, based on >13,500 patients with relapsing MS in 13 clinical trials. The correlation coefficients (R2) with downstream disability for new/enlarging T2 lesions and brain atrophy were 0.61 and 0.48, respectively, with both measures retained in a final model with a combined R2 of 0.75, strongly supporting the use of these MR imaging outcomes as clinical surrogate measures when applied in an appropriate clinical/treatment-specific context.

It is likely that in the future, advanced quantitative and functional measures by MR imaging will assume far greater impor-

---

Indicates article with supplemental on-line tables.

http://dx.doi.org/10.3174/ajnr.A3937

tance in measuring aspects of neurodegeneration, de- and remy-}
eination, and particularly in progressive stages of MS, including
in individual patients. However, the currently recognized success
of the existing MS therapies is thought to be predominantly based
on the impact on the early inflammatory stages of disease, with a
variable and lesser, perhaps only secondary, impact on neurode-
generation. Standardized brain volume (atrophy) measures are
predictive of disability and, when applied serially, can be used to
assess atrophy patterns, including in individual patients, but
these are not widely available or currently thought to be practical
in clinical practice unless and until MR imaging manufacturers or
other third parties support these measures.

There is an emerging consensus in the MS field that successful
treatment results in no evident inflammatory disease activity
(NEIDA), defined as the absence of new relapses or new MR im-
aging lesions. This was discussed at a recent international consen-
sus workshop sponsored by the Cleveland Clinic (Las Vegas; De-
ceMBER 12–14, 2013). Standardized MR imaging lesion reporting
was identified by survey as a critical element for future implemen-
tation and testing of NEIDA. There have been prior initiatives to
improve MS care through standardized requests, MR im-
aging acquisition, and interpretation templates, including by the
Consortium of MS Centers. More recent revisions recognize the
improved hardware, including the potential shift to a 3D acquisi-
tion technique (see www.mscare.org). MR imaging technology
evolves rapidly, field strength is ever-increasing, and acquisition
and processing techniques will continue to impact lesion counts,
which will necessarily evolve as well. Nevertheless, well-planned
2D and 3D acquisition techniques and attention to detail in man-
ual or computerized registration will provide a basis for accurate
serial analyses.

While there is almost certain to be disagreement as to the op-
timal cut-point for lesion counts to support treatment for MS,
standardized, high-quality MR imaging acquisition combined
with reports that provide the essential elements for MS diagnosis
or therapeutic decision-making (On-line Tables 2 and 3) can, no
doubt, improve outcomes for patients with MS.

Disclosures: Jack H. Simon—UNRELATED: Consultancy: Cleveland Clinic Foundation, Comments: MS Experts Consensus Summit: No Evidence of Disease Activity as a Treatment Target in MS, Biogen Idec; Comments: MS Clinical Research: Plan Advisory Board, Grants/Grants Pending: Biogen Idec.* Comments: CHAMPS/CHAMPIONS MS Trial research support (none current), manuscript preparation (editorial) support (no funds involved), Kinkel et al and Simon et al manuscripts of CHAMPS/CHAMPIONS outcomes, Payment for Manuscript Preparation: Biogen Idec, Comments: Manuscript preparation support continues (no money involved). Royalties: Cambridge University Press, Comments: Co-Editor of Imaging Acute Neurologic Disease (no royalties to date), Travel/Accommodations/Meeting Expenses Unrelated to Activities Listed: National Institutes of Health/National MS Society,* Canadian MS Society,* Guthy Jackson Foundation,* Comments: Study Section Work: National Institutes of Health/National MS Society/Canadian, no personal fees or honoraria accepted, travel reimbursement only (National Institutes of Health/National MS Society), Canadian MS/Italian MS/Ad Hoc (University of Washington Foundation), no fees or travel funds involved. Robert A. Bermel—RELATED: Grant: Biogen Idec,* Genzyme,* Comments: unrestricted educational grant in support of the 2014 No Evidence of Inflammatory Disease Activity as a Treatment Target Continuing Medi-


REFERENCES

1. Barkhof F, Simon JH, Fazekas F, et al. MRI monitoring of immuno-
modulation in relapse-onset multiple sclerosis trials. Nat Rev Neu-
rol 2012; 8:13–21
multiple sclerosis: 2010 revisions to the McDonald criteria. Ann
Neurol 2011; 69:292–302
3. Yousry TA, Pelletier D, Cadavid D, et al. Magnetic resonance imag-
ing pattern in natalizumab-associated progressive multifocal leu-
4. Kantarci OH, Pirko I, Rodriguez M. Novel immunomodulatory ap-
proaches for the management of multiple sclerosis. Clin Pharma-
col Ther 2014; 95:32–44
in MS: Canadian MS Working Group updated recommendations.
in patients with relapsing multiple sclerosis. Multi Scler
2013; 19:605–12
come in multiple sclerosis patients treated with interferon beta.
Ann Neurol 2013; 73:95–103
to interferon-β: is there a role for MRI? Neurology 2014; 81:248–54
9. Sormani MP, Arnold DL, De Stefano N. Treatment effect on brain
atrophy correlates with treatment effect on disability in multiple
10. Fisher E, Lee, JC, Rudick, R. Temporal patterns of brain atrophy in
individual multiple sclerosis patients. The American Academy of
Neurology’s 65th AAN Annual Meeting in San Diego, CA; March
16–23, 2013
11. Simon JH, Li D, Traboulsee A, et al. Standardized MR imaging pro-
tocol for multiple sclerosis: Consortium of MS Centers Consensus

832 Editorials May 2014 www.ajnr.org