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REVIEW ARTICLE
METABOLIC BRAIN MAPPING

A Review of MR Spectroscopy Studies of Pediatric
Bipolar Disorder

D.G. Kondo, T.L. Hellem, X.-F. Shi, Y.H. Sung, A.P. Prescot, T.S. Kim, R.S. Huber, L.N. Forrest, and P.F. Renshaw

ABSTRACT

Pediatric bipolar disorder is a severe mental illness whose pathophysiology is poorly understood and for which there is an urgent need for
improved diagnosis and treatment. MR spectroscopy is a neuroimaging method capable of in vivo measurement of neurochemicals
relevant to bipolar disorder neurobiology. MR spectroscopy studies of adult bipolar disorder provide consistent evidence for alterations
in the glutamate system and mitochondrial function. In bipolar disorder, these 2 phenomena may be linked because 85% of glucose in the
brain is consumed by glutamatergic neurotransmission and the conversion of glutamate to glutamine. The purpose of this article is to
review the MR spectroscopic imaging literature in pediatric bipolar disorder, at-risk samples, and severe mood dysregulation, with a focus
on the published findings that are relevant to glutamatergic and mitochondrial functioning. Potential directions for future MR spectros-
copy studies of the glutamate system and mitochondrial dysfunction in pediatric bipolar disorder are discussed.

ABBREVIATIONS: ACC � anterior cingulate cortex; ATP � adenosine triphosphate; BD � bipolar disorder; GABA � �-aminobutyric acid; Gln � glutamine; Glu �
glutamate; HC � healthy controls; PCr � phosphocreatine; Pi � inorganic phosphate; tChol � total choline

With an estimated lifetime prevalence of up to 5.1%,1 bipolar

disorder (BD) is a disabling and often fatal brain disease

characterized by recurrent episodes of depression and mania. In

pediatric BD, the rate of attempted suicide is 40 times that of

healthy adolescents,2 and BD is the diagnosis imparting the great-

est risk for completed suicide.3 Adding to the morbidity and mor-

tality imposed on patients and their families, the annual economic

burden of BD in the United States is at least $151 billion.4 Despite

decades of research, the underlying pathophysiology of BD across

the life span is yet to be elucidated.5,6

The neurobiology of pediatric BD is of particular interest be-

cause up to 65% of patients with BD experience its onset before 19

years of age.7,8 Adolescence is the peak period for the first episode

of mania,9 the mood state that defines the illness. In fact, the

World Health Organization ranks BD as the fourth most disabling

disease worldwide in persons between 10 and 24 years of age.10

Leverich et al11 found that childhood-onset BD is associated with

a delay of first treatment of �16 years. Expert consensus has iden-

tified the improved definition and diagnosis of pediatric BD,

based on its underlying pathophysiology, as a critical barrier to

progress in the field.12 The National Institute of Mental Health

Strategic Plan13 and A Research Agenda for DSM-V14,15 both ad-

vocate attempts to discover neuroimaging biomarkers of BD.

Thus, neuroimaging has an important role to play in translational

research in pediatric BD.16-18

Converging lines of evidence implicate 2 related systems in

the pathophysiology of BD: 1) alterations in glutamatergic

neurotransmission,19-21 and 2) cerebral mitochondrial dysfunc-

tion.22-24 They are interdependent because �80% of all synapses are

glutamatergic25 and approximately 85% of the energy derived from

glucose in the brain is used to support glutamatergic neurotransmis-

sion and the conversion of glutamate (Glu) to glutamine (Gln).26,27

Mood-related alterations in cerebral bioenergetics would pre-

sumably have an impact on the glutamate system. Support for this

is provided by the fact that inhibition of mitochondrial respira-

tory chain complexes I, III, and IV in an animal model of depres-

sion is reversed by administration of the N-methyl-D-aspartate

glutamate receptor antagonist ketamine,28 a novel intervention

for refractory BD.29,30 MR spectroscopy is a neuroimaging

method capable of noninvasive interrogation of specific brain

metabolites in vivo. Because it allows measurement of the chem-

ical status of specific brain regions, MR spectroscopy is one po-

tential method for establishing quantitative correlates of illness
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and treatment response in psychiatric conditions such as BD.31,32

Accordingly, MR spectroscopy has been used extensively in BD

research to study both the glutamate system and brain bioener-

getics. Two systematic reviews33,34 and 1 meta-analysis35 have

each concluded that MR spectroscopy studies provide convincing

evidence for glutamatergic abnormalities in BD. As reviewed by

Stork and Renshaw,36 the MR spectroscopy literature in BD also

provides consistent support for mitochondrial dysfunction. The

promising nature of these findings has led to the conjecture

that MR spectroscopy studies may represent “a pathway to

diagnosis, novel therapeutics, and personalized medicine” in

mood disorders.37

There is an urgent need for translational pediatric BD re-

search, for the reasons enumerated above and because the data

suggest that juvenile BD is continuous with adult BD.38-40 The

MR spectroscopy literature in pediatric major depressive disorder

was recently reviewed,41 but a review of MR spectroscopy studies

of child and adolescent BD is lacking. The purpose of this article is

to provide a companion review in pediatric BD, with particular

attention paid to evidence for alterations in the glutamatergic

system and mitochondrial dysfunction, and to discuss opportu-

nities for further study.

MR Spectroscopy Measures Relevant to Bipolar Disorder
A technical description of MR spectroscopy methods for data ac-

quisition and analysis is beyond the scope of this article, but ex-

cellent technical reviews are available.42,43 MR spectroscopy can

be used to study a range of atomic nuclei that possess magnetic

properties, including hydrogen (1H), phosphorus (31P), lithium

(7Li), fluorine (19F), and carbon (13C).31 To date, the published

pediatric BD literature has largely focused on 2 of these: 1H and
31P.

1H-MR Spectroscopy. The most common spectroscopic imaging

method used in BD research is 1H-MR spectroscopy because the

scans can be obtained on standard low-field clinical systems. Glu-

tamatergic 1H-MR spectroscopy metabolites include Glu, Gln,

�-aminobutyric acid (GABA) and N-acetyl aspartylglutamate.44

At the magnetic field strengths used in clinical research, separa-

tion of the Glu and Gln resonance is unreliable42; however their

combined peak (Glx) can be accurately quantified and therefore is

most commonly reported. Although by convention Glx is defined

as Glu�Gln, GABA may also contribute to the total Glx signal.45

However, when conventional MR spectroscopy methods are

used, the contribution of GABA to Glx is considered very small.46

Significant findings in 1H-MR spectroscopy measures consid-

ered indicators of mitochondrial dysfunction in BD include the

following: decreased NAA, decreased total creatine, increased to-

tal choline (tChol), increased Glx, and increased mIns.36 NAA is

synthesized inside neuronal mitochondria from L-aspartate �

acetyl coenzyme A by the enzyme L-aspartate-N-acetyl trans-

ferase in an energy-dependent process, suggesting that decreased

NAA concentrations are consistent with impaired mitochondrial

bioenergetics.36,47 The concentration of NAA by in vivo 1H-MR

spectroscopy methods is consistently higher than that found by

careful 1H-nuclear MR analysis of freeze-clamped animal brain

tissue, suggesting additional contributions to the “NAA” in vivo

peak.48 The total creatine peak is composed of phosphocreatine

(PCr), a temporal and spatial buffer of adenosine triphosphate

(ATP), and creatine (PCr�Cre). tChol is a trimethylamine peak

that is composed of phosphocholine, a membrane phospholipid

precursor; glycerophosphocholine, a membrane phospholipid

breakdown product; and choline, acetylcholine, carnitine, and

acetyl-L-carnitine. The replicated finding of increased tChol in

adult BD is hypothesized to be due to increased phospholipid

turnover resulting from mitochondrial dysfunction.36 The Glx

peak contains contributions from glutamate, glutamine, and

�-aminobutyric acid. The largest contributors to the Glu reso-

nance are Glu in metabolic pathways and, to a much lesser

degree, the neurotransmitter Glu. Increased Glx in BD is hy-

pothesized to reflect Glu-induced neuronal hyperactivation,36

which places abnormally large demands on neuronal and glial

energy metabolism.46

Notably, the classic medication lithium has a significant nor-

malizing effect on Glx in BD.49 The mIns resonance consists pri-

marily (�95%) of the cyclic sugar alcohol mIns, with minor con-

tributions from inositol sugar phosphate compounds and

glycine.50 The relevance of mIns to BD stems from its status as a

potential indicator of altered membrane metabolism resulting

from mitochondrial dysfunction36 and the fact that a decrease in

mIns is associated with administration of the BD medication lith-

ium.36 A representative 1H-MR spectroscopy spectrum is shown

in Fig 1.

31P MR Spectroscopy. Another MR spectroscopy technique used

in BD research is 31P-MR spectroscopy, which requires special-

ized hardware and software, such as a dual-tuned 1H-31P radio-

frequency coil, a broadband radio-frequency power amplifier,

and customized pulse sequences. Investigator experience with
31P-MR spectroscopy pulse-sequence design and data processing/

analysis is also essential because MR imaging system manufactur-

ers do not typically supply these tools. Yet 31P-MR spectroscopy

may provide unique insights into BD neurobiology because it is a

validated method for in vivo measurement of the ultimate mito-

chondrial process: ATP synthesis.51 Few 31P-MR spectroscopy

FIG 1. Representative proton-1 MR spectroscopy (1H-MRS) spectrum
acquired with parameters TR/TE � 2000/31 ms on a 3T MR imaging
scanner.
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studies of adult BD have been reported,52 and to date, there are

just 3 published 31P-MR spectroscopy investigations in the pedi-

atric BD literature.53-55 31P-MR spectroscopy measures relevant

to mitochondrial function include phosphomonoesters, phos-

phodiesters, �-nucleoside triphosphate, PCr, inorganic phos-

phate (Pi), and intracellular pH.52 The phosphomonoesters signal

contains contributions from the membrane precursors phos-

phoethanolamine and phosphocholine, in addition to sugar and

inositol phosphates.36 Phosphomonoesters are the building block

precursors of neuronal membrane phospholipids. Both increased

and decreased phosphomonoesters has been observed in studies

of BD; thus, changes in the phosphomonoesters resonance may be

state-dependent—with increased phosphomonoesters in depres-

sion and mania reflecting increased membrane phospholipid

turnover, with decreased phosphomonoesters in subjects with eu-

thymic BD possibly reflecting an opposite quiescence.36

The phosphodiester signal, made up of contributions from

glycerophosphocholine, glycerophosphoethanolamine, and mo-

bile phospholipids, represents the breakdown products of phos-

pholipid membranes.52 PCr is the buffer storage form of ATP and

serves as the substrate reservoir for the creatine kinase reaction.56

In the mitochondria, this reaction reversibly converts PCr into

ATP � creatine in a 1:1 molar ratio.57,58 Neuronal energy de-

mands are met through a shift in reaction equilibrium, which is

designed to maintain constant ATP concentrations.59-61 �-nucle-

oside triphosphate predominately measures �-ATP levels and is,

therefore, used as a proxy measure of relative ATP concentrations.

Pi and adenosine diphosphate are the products of the ATP hydro-

lysis reaction and are released when ATP is consumed. Intracel-

lular pH can be calculated by using a modified Henderson-Has-

selbalch equation and the resonance Pi relative to PCr.62 Figure 2

presents a representative 31P-MR spectroscopy spectrum.

MATERIALS AND METHODS
Search Strategy
A computer-assisted literature search by using PubMed and

MEDLINE data bases of the National Library of Medicine was

conducted to identify reports focusing on pediatric BD samples

studied with MR spectroscopy. The following terms were in-

cluded in the search: “MR spectroscopy,” “bipolar disorder,” “pe-

diatric or child or adolescent or juvenile or early-onset.” A back-

ward search of bibliographic references from the identified

references was performed to ensure inclusion of relevant articles;

a forward citation search for identified studies was also per-

formed. We also included reports from MR spectroscopy studies

of at-risk youth who were the offspring of parents with BD and

subjects with severe mood dysregulation,63 also known as disrup-

tive mood dysregulation disorder,64 a new mental illness of child-

hood published in the Diagnostic and Statistical Manual of Mental

Disorders, 5th ed,65 the diagnostic manual for US psychiatrists, in

May 2013. All relevant articles published in English were in-

cluded, and due to the small number of studies, no MR spectros-

copy methodologic exclusion criteria were applied.

RESULTS
Overview of the Literature
The literature searches yielded 55 citations, of which 26 contained

original neuroimaging acquired from subjects younger than 18

years of age. The sample characteristics, scanning acquisition

methods, voxel location, and MR spectroscopy metabolite results

are presented in Tables 1– 4, and the key findings related to glu-

tamatergic and mitochondrial function are summarized below. In

addition to the modest number of reports and diversity of study

methods and samples, this literature is in its infancy: The first MR

spectroscopy study of pediatric BD was published in 2000. De-

spite this, the investigations conducted to date point to numerous

important directions for further study.

Cross-Sectional MR Spectroscopy Studies of Pediatric BD

Cross-Sectional Studies of the Glutamate System. A summary

of the cross-sectional MR spectroscopy studies comparing pa-

tients with pediatric BD versus healthy controls (HC) is shown in

Table 1. Castillo et al66 were the first to study juvenile patients

with BD and controls in 2000, reporting that patients with BD

showed elevated Glx in the bilateral frontal lobes and basal gan-

glia. In a cross-sectional study of stably medicated pediatric pa-

tients with BD versus patients with mania, Glx was decreased in

mania; this finding, the authors noted, could represent anterior

cingulate cortex (ACC) hypometabolism.67 In another study, de-

creased ACC Gln was found in pediatric patients with manic BD,

compared with both controls and stably medicated patients,68

while there were no differences in Glu.

Cross-Sectional Studies of Mitochondrial Function. The frontal

lobes have been the subject of numerous case-control studies in

pediatric BD, with several investigators reporting decreased NAA

concentrations in subjects with pediatric BD compared with con-

trols.69-73 In one report whose findings were in the opposing di-

rection, Patel et al74 reported increased NAA in the ACC in pa-

tients with pediatric BD depression. Two studies reported

increased mIns in pediatric BD, compared with both HC74 and

intermittent explosive disorder.75 One study of pediatric mania

found reduced tChol levels compared with HC,75 while a study of

pediatric BD depression found an increase in tChol.74

As noted above, 3 recent studies of pediatric BD used 31P-MR

FIG 2. Representative phosphorus 31 MR spectroscopy (31P-MRS)
spectrum acquired without proton decoupling on a 3T MR imaging
scanner.
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spectroscopy to study cerebral energy metabolism: Shi et al53 fo-

cused on the frontal lobe, Sikoglu et al54 reported global or “whole

brain” findings, and Weber et al55 interrogated the ACC. Most

interesting, none of the studies reported a significant difference

between BD and HC in �-nucleoside triphosphate (a proxy mea-

sure for ATP), but 2 investigators reported a significant decrease

in Pi and an increased PCr/Pi ratio,53,54 neither of which has been

reported in studies of adult BD. In the most recent 31P-MR spec-

troscopy study of pediatric BD, manic subjects had reduced intra-

cellular pH and lower adenosine diphosphate concentrations in

the ACC.55

Longitudinal Treatment MR Spectroscopy Studies of
Pediatric BD and High-Risk Samples

Longitudinal Studies of the Glutamate System. Strawn et al76

treated pediatric patients with BD in a manic or mixed episode

with valproic acid and performed 1H-MR spectroscopy at base-

line, day 7, and day 28 (Table 2). In subjects who achieved clinical

remission with valproic acid, the investigators found a decreased

baseline Glx and a correlation between a change in the Young

Mania Rating Scale77 scores and decreased Glu in the left ventro-

lateral prefrontal cortex.76

Longitudinal Studies of Mitochondrial Function. Repeated-mea-

sures MR spectroscopy studies of treatment response have been

conducted in pediatric BD and in high-risk samples of children

with a parent with BD. Davanzo et al78 treated pediatric inpatients

with manic BD with lithium and found that decreased mIns was

associated with treatment, an effect that was stronger in treatment

responders. Patel et al79 treated adolescents with BD depression

with lithium and found that mIns concentrations did not signif-

icantly change from baseline, though pretreatment cortical mIns

was significantly lower in patients who achieved remission. The

same investigators later reported a significant decrease in NAA

levels in response to treatment with lithium.80 DelBello et al81

treated pediatric patients with mania with olanzapine and found

that increased tChol was associated with treatment; in addition,

treatment remitters demonstrated increased NAA while nonre-

mitters showed a decrease in NAA. Chang et al82 randomized

subjects with pediatric BD depression to quetiapine or placebo

and found that decreased mIns levels were associated with a pos-

itive treatment response. One repeated-measures MR spectros-

copy study has been performed with a high-risk sample of youth

with subsyndromal mood symptoms and at least 1 parent with

BD: Chang et al83 found no significant alterations in NAA, tChol,

or mIns associated with valproic acid treatment. However, a large

effect size was noted for decreased posttreatment NAA in the right

dorsolateral prefrontal cortex.83

Cross-Sectional MR Spectroscopy Studies of
Youth at Risk for BD
Cecil et al69 conducted a study of mood-disordered children with

a familial risk for BD and found increased mIns and decreased

NAA in the high-risk subjects compared with HC (Table 3). Gal-

lelli et al84 studied children of parents with BD in 3 groups: those

with BD, those with subsyndromal BD symptoms, and HC. Mea-

suring NAA, mIns, and tChol, the investigators found no signifi-Co
nt
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cant between-group differences. Singh et al85 studied an at-risk

sample of offspring of parents with BD, focusing first on the ACC

and then on the cerebellar vermis.86 In the ACC, the authors

found decreased absolute Glu concentrations in BD compared

with both HC and offspring with subsyndromal BD symptoms.85

Then, studying at-risk offspring without BD and HC, Singh et al86

reported decreased cerebellar mIns and tChol. Finally, Wozniak

et al87 measured ACC Glu in children with at least 1 parent with

BD, dividing their sample into children with high-versus-low

scores on a Child Behavior Checklist88 profile proposed as a cor-

relate of pediatric BD.89,90 No group differences in ACC Glu were

found, but in the high-score group, there was a positive correla-

tion between Glu levels and Child Behavior Checklist profile

scores.87

Cross-Sectional and Repeated-Measures MR
Spectroscopy Studies of Severe Mood Dysregulation
The publication of the Diagnostic and Statistical Manual of Mental

Disorders, 5th ed65 in May 2013 introduced disruptive mood dys-

regulation disorder as a new mood disorder of childhood (Table

4). Designed to differentiate children who present with severe,

nonepisodic irritability from those with BD,91 disruptive mood

dysregulation disorder is closely related to the severe mood dys-

regulation syndrome defined by Leibenluft63 and Leibenluft et

al.92 Dickstein et al93 conducted a series of prescient MR spectros-

copy investigations of severe mood dysregulation. In a case-con-

trol study, the investigators used 1H-MR spectroscopy to interro-

gate the frontal, temporal, and parietal cortices in severe mood

dysregulation versus HC; their main finding was reduced mIns in

the temporal cortex, though female subjects with severe mood

dysregulation showed trends toward increased temporal tCr and

Glx. The authors then conducted a randomized controlled trial of

lithium in severe mood dysregulation, selecting this intervention

on the basis of its potential effects on irritability, aggression, and

neurometabolism.94 MR spectroscopy scans were acquired at

baseline and repeated following 6 weeks of treatment with lithium

or a placebo. A significant treatment Group � Time interaction

was found for parieto-occipital Glx, which increased in the lith-

ium group and decreased in placebo group.94

DISCUSSION
Pediatric BD is a prevalent and disabling illness, for which prog-

ress in timely diagnosis and effective treatment is urgently needed.

Research in psychiatry is increasingly focused on biomarker dis-

covery,95,96 and a consensus is emerging that MR neuroimaging

investigations,16 including multimodal approaches that include

MR spectroscopy,17 offer significant promise in elucidating the

pathophysiology of BD.97

Findings Related to the Glutamate System in Pediatric BD
It has been proposed that MR spectroscopy studies of the gluta-

mate system may hold the key to elucidating the pathophysiology

of BD and to identifying novel treatment interventions.37 In

adults, a consistent pattern has emerged in meta-analyses of the

MR spectroscopy mood disorder literature: increased cerebral Glx

levels in BD33,35 and decreased Glx in major depressive disor-

der.33,98 In comparison, there have been relatively few pediatricCo
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BD studies of the glutamate system. In line with the adult BD lit-

erature, Castillo et al66 reported elevated Glx in pediatric BD com-

pared with HC. Moore et al67 reported decreased Glx in BD mania

compared with subjects with BD stably treated with risperidone.

Using high-field 4T scans, these investigators were also able to

parse the Gln and Glu resonances in the ACC. Most intriguing,

they found decreased Gln in untreated youths with BD compared

with both stably medicated patients with BD and HC.67 Taken

together with the fact that there was no difference in Glu among

the 3 groups,67 this finding suggests that the Gln/Glu ratio mea-

sured in adult BD investigations99,100 merits further study in pe-

diatric BD. Finally, in a longitudinal valproic acid treatment

study, Strawn et al found decreased baseline Glx in treatment

remitters and decreases in Young Mania Rating Scale scores cor-

related with decreased Glu concentrations.76 The authors con-

cluded that the predictive value of MR spectroscopy neuroimag-

ing “may relate to a disturbance in either glutamine or GABA, or

in the homeostatic equilibrium of Glu and glutamine,”76 provid-

ing further support for the exploration of the Gln/Glu ratio as a

potential biomarker in pediatric BD.

Findings Related to Mitochondrial Dysfunction in
Pediatric BD
There are 5 reports of decreased cortical NAA concentrations in

pediatric BD,69-73 and 1 study of adolescent BD depression that

found increased NAA in the left ventral lateral prefrontal cortex,

right ventral lateral prefrontal cortex, and ACC.74 In addition,

Castillo et al66 reported no difference in cortical NAA between BD

and HC, though the study may have been limited by its sample

size. Most interesting, Chang et al70 found normal NAA levels in

the dorsolateral prefrontal cortex of youth at risk for BD who had

not yet experienced mania, suggesting that alterations in NAA

may be a marker for fully syndromal cases of in BD.101 Longitu-

dinal studies of NAA have shown mixed results: increased pre-

frontal NAA in BD manic olanzapine remitters81; decreased pre-

frontal NAA in depressed adolescents with BD treated with

lithium80; and no significant change in NAA following treatment

with lithium,78 quetiapine in BD depression,82 or youth at risk for

BD treated with valproic acid.83 While additional work will be

required to confirm the role of NAA in pediatric BD, the 5 case-

control studies69-73 showing decreased NAA are in agreement

with the findings in the adult literature.

Studies of mIns have reported an increase in pediatric BD in

both the manic75,78 and depressed mood state.74 In addition, Da-

vanzo et al78 showed that decreased ACC mIns is associated with

a positive response to acute lithium treatment, a finding that is

consistent with the molecular mechanism common to mood-sta-

bilizing medications.102

To date, only three 31P-MR spectroscopy studies of pediatric

BD have been published. Shi et al53 studied 14 depressed subjects

with BD and 24 HC and found that unmedicated BD had de-

creased ACC Pi compared with both HC (17%; P � .038) and

medicated BD (24%; P � .022). In a study of 8 subjects with BD

and 8 HC, Sikoglu et al54 reported that compared with HC, sub-

jects with BD had reduced global Pi. The relevance of Pi to mito-

chondrial dysfunction in BD may be the fact that Pi is a regulator

of oxidative phosphorylation, the metabolic pathway for ATPCo
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production.78,103 Furthermore, it is thought that the only Pi that

is detectable by nuclear MR imaging is involved in oxidative phos-

phorylation.104,105 Mammalian cells in which oxidative phos-

phorylation is impaired can reduce the concentration of free Pi via

compartmentation to the inner mitochondrial membrane, which

immobilizes the phosphorus ions and renders them invisible to

MR spectroscopy.106-108 In addition, Pi has a direct effect in vitro

on glucose use in cortical neurons.109

It has been posited that decreased ATP consumption leads to a

fall in cytosolic Pi, to a level that balances ATP synthesis and

use,110,111 thus stabilizing the phosphorylation potential of the

cell.107,108 Additional support for the potential relevance of Pi in

the pathophysiology of BD is provided by the observation that

the activity of sodium–potassium adenosine triphosphatase (Na� /

K � ATPase), an enzyme partially regulated by Pi,97-101,112-114 is

altered in patients with BD.115 In the third and most recent
31P-MR spectroscopy study of pediatric BD, Weber et al55 found

reduced intracellular pH and decreased adenosine diphosphate

concentrations in the ACC. These results are in line with the con-

sistent finding of reduced intracellular pH in studies of adult BD36

and with the discovery of Chance et al116 that adenosine diphos-

phate is one of the principal controllers of oxidative metabolism.

Limitations of Pediatric MR Spectroscopy Studies
Despite the consistent difference in the glutamatergic entity Glx

between patients with BD and controls found by 3 independent

analyses of the adult MR spectroscopy literature33-35 and the re-

ports of glutamatergic alterations in pediatric BD discussed here,

there are uncertainties associated with MR spectroscopy measures

of Glu. In the brain, Glu plays at least 3 key roles: It is the major

excitatory neurotransmitter, it serves as the precursor for the ma-

jor inhibitory neurotransmitter GABA, and it is involved in the

synthesis of smaller metabolites, including glutathione, as well as

larger peptides and proteins.117 Glu is involved in a variety of

metabolic pathways, including the neuronal tricarboxylic acid cy-

cle, the astrocytic tricarboxylic acid cycle, pyruvate carboxylation,

and the glutamate-glutamine cycle that links neuronal and astro-

cytic metabolism.118 This metabolic compartmentation leads to

spatial uncertainty because Glu is present in glutamatergic

neurons, GABAergic neurons, and astrocytes, in addition to

extracellular spaces. The published studies of pediatric BD do

not parse these multiple Glu pools in terms of either function

or location.

Another important limitation of the extant pediatric BD MR

spectroscopy literature is the static nature of the measurements

reported. Static measures are likely to be insufficient in generating

a comprehensive picture of BD pathophysiology because brain

metabolism is predominantly made up of dynamic processes (ie,

enzyme-catalyzed reactions and the transfer of chemical groups

through metabolic pathways). Therefore, elucidation of BD etio-

pathogenesis may require the use of techniques capable of dy-

namic in vivo measures. Two examples of these that may find

application in the study of BD are magnetization transfer, which

can be used to measure the Kf of the creatine kinase reaction,56

and dynamic 13C MR spectroscopy, which has been validated as a

method for studying neuronal bioenergetics and Glu neurotrans-

mission and cycling.119

Future Translational Directions in MR Spectroscopy
Studies of Pediatric BD
Improved diagnosis and treatment for pediatric BD are urgently

needed: While the evidence suggests that pediatric bipolar illness

is continuous with adult BD,38-40 the delay to first appropriate

treatment experienced by individuals with childhood-onset BD

averages more than 16 years.11 To date, MR spectroscopy studies

of pediatric BD comprise a small, albeit rapidly expanding, liter-

ature. On the basis of its ability to measure neurochemical entities

relevant to glutamatergic and mitochondrial function in vivo, MR

spectroscopy will play a vital role in future translational studies of

pediatric BD diagnosis, treatment development, and personalized

medicine.37,120 Cross-sectional studies are needed to determine

whether MR spectroscopy can reliably distinguish pediatric BD

from disorders with overlapping symptoms, such as disruptive

mood dysregulation disorder, attention deficit/hyperactivity dis-

order, and, especially, major depressive disorder.121 Comparison

with MR spectroscopy studies of normal brain development122

will shed light on the natural history of BD and point investigators

toward opportunities for intervention. Longitudinal studies may

determine the predictors of continuity with adult BD and whether

timely treatment is capable of altering the course of BD in at-risk

individuals. Novel study designs combining MR spectroscopy

with other neuroimaging methods in a multimodal approach can

be used to increase the dimensionality of the information gleaned

from a study sample.17,123,124 Finally, future studies would benefit

from larger sample sizes because it has been calculated that MR

spectroscopy investigations require analyzable data on at least 39

affected subjects and 39 HC to have adequate power to detect a

10% group difference in neurometabolite concentrations.125,126
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