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REVIEW ARTICLE

Brain Perfusion Imaging in Neonates: An Overview
X M. Proisy, X S. Mitra, X C. Uria-Avellana, X M. Sokolska, X N.J. Robertson, X F. Le Jeune, and X J.-C. Ferré

ABSTRACT
SUMMARY: The development of cognitive function in children has been related to a regional metabolic increase and an increase in
regional brain perfusion. Moreover, brain perfusion plays an important role in the pathogenesis of brain damage in high-risk neonates, both
preterm and full-term asphyxiated infants. In this article, we will review and discuss several existing imaging techniques for assessing
neonatal brain perfusion.

ABBREVIATIONS: ASL � arterial spin-labeling; HIE � hypoxic-ischemic encephalopathy; NIRS � near-infrared spectroscopy

Brain perfusion can be assessed by a number of imaging tech-

niques that have been developed in recent decades. These in-

clude PET, SPECT, perfusion CT, diffuse optical spectroscopy,

DSC–MR imaging, arterial spin-labeling (ASL), and sonography.

The physiology of perfusion can be characterized by many param-

eters such as CBF (whole-brain or regional CBF to �1 anatomic

region), CBV, and MTT. Some of these parameters may be ob-

tained depending on the perfusion technique and type of tracer

used.1 The results of brain perfusion imaging techniques are usu-

ally expressed as CBF. Most of these techniques rely on the use of

endogenous or exogenous tracers and involve different technical

requirements and mathematic models.2-4 Wintermark et al5 pub-

lished a literature review of brain perfusion imaging techniques in

adults and addressed the feasibility of applying the techniques to

children. However, in view of the features of neonatal physiology

and pathology, the advantages and disadvantages may differ be-

tween adults and children. For example, bedside techniques are an

advantage for high-risk neonates. Noninvasive and nonradiating

methods that have been recently developed owing to advances in

medical imaging techniques are highly suitable for neonates.6,7

However, given the smaller head size and lower physiologic brain

perfusion compared with older children and adults, noninvasive

MR perfusion imaging is still challenging.

Neonatal encephalopathy secondary to hypoxic-ischemic in-

jury around birth is an important problem worldwide. Diagnosis

is based on clinical, electroencephalographic, and MR imaging

findings. Hypoxic-ischemic encephalopathy (HIE) is a major

cause of perinatal mortality and morbidity.8 For a few years, in-

duced hypothermia has been used as neuroprotective treatment

for neonatal HIE, reducing the extent of neurologic damage and

improving outcome.9,10 However, a considerable number of in-

fants still have an abnormal outcome. Several preclinical research

studies are also being conducted on drugs that may act synergis-

tically or additively with hypothermia.11,12 Transfontanellar ul-

trasound and MR imaging provide invaluable information about

neonates with HIE for determining positive findings and differ-

ential diagnoses, predicting neuromotor outcome, and helping to

counsel parents about long-term outcome.13 Moreover, MRI is an

effective biomarker for treatment response.14 In addition to con-

ventional MR imaging scoring,15 some quantitative biomarkers

could provide more objective information, such as DWI with

regional ADC measurements,16 1H-MR spectroscopy, and 31P-

MR spectroscopy.17

Brain perfusion plays an important role in the pathogenesis of

brain damage in high-risk neonates, both preterm and full-term

asphyxiated neonates.18,19 Hypoxic-ischemic injury leads to re-

duced blood flow to the brain followed by restoration of blood

flow and the initiation of a cascade of pathways. The neurotoxic

biochemical cascade of lesions after reperfusion, known as “rep-

erfusion injury,” is the primary target for neuroprotective inter-
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ventions.10,12 In preterm infants, white matter injury is a major

cause of cerebral palsy, which is also assumed to be mainly due to

a lack of blood flow and oxygen delivery.20

It is critical to understand the development of early changes in

the injured neonatal brain. A better understanding of the pattern

of perfusion and the relationship with other therapeutic and out-

come biomarkers would serve as a decision aid to improve sup-

port for high-risk neonates.

In this article, we will review and discuss several existing im-

aging techniques for assessing neonatal brain perfusion (On-line

Table).

Practical Aspects of Data Acquisition in Neonates
There is no consensus regarding the practical aspects of data ac-

quisition, and each institution may have its own practice. Often,

infants younger than 3 months of age are imaged without sedation

unless they are receiving sedative medication for clinical indica-

tions. We use the “feed and bundle” method to perform nonse-

dated neonatal MR imaging. Ventilated infants in the intensive

care unit are usually sedated with morphine. Moreover, depend-

ing on the clinical condition, additional drugs may be given, an-

tiepileptic drugs or vasopressors. In infants older than 3–5

months of age, sedation may be required. Sedation status remains

an important consideration in pediatric imaging. Indeed, seda-

tion may have an impact on cerebral perfusion. There are few data

in the literature about how sedation or general anesthesia may

alter perfusion.21,22

Without sedation, a rigid head stabilization (head lightly

fixed) is required to perform most imaging (MR imaging, PET,

SPECT, CTP). The longer the examination, the longer the im-

mobilization is required. Near-infrared spectroscopy (NIRS)

does not require rigid head stabilization because the optical

fibers are embedded in a “cap” attached to the infant’s head.

Brain Perfusion Measurements by Using Nuclear Medicine
Methods
Nuclear medicine methods were the first ones used to assess

CBF in adults and neonates.23,24 Correlation with structural

information (CT or MR imaging) is highly desirable for accu-

rate interpretation.

Positron-Emission Tomography. The PET technique measures

radiopharmaceuticals labeled with positron emitters using a PET

scanner. PET is used to assess regional CBF by using injected H2O

or inhaled CO2 labeled with the isotope oxygen 15 (15O). PET

with 15O water provides an accurate and reproducible quantita-

tive measurement of CBF and is considered the criterion standard

method. However, 15O-PET uses ionizing radiation, and the tech-

nique is not widely available (there is a need for close proximity to

a cyclotron) because the tracer has an extremely short half-life.

Moreover, PET is not available at the bedside or for emergencies.

Data processing to obtain maps is automatically generated by the

workstation; then the results can be visually interpreted on a com-

puter screen. The underlying mathematic model for data postpro-

cessing is the Kety-Schmidt model.5

In 1983, Volpe et al23 conducted the first study demonstrating

the use of PET for determining regional CBF in neonates. Altman

et al25 measured mean CBF in 16 preterm infants (CBF � 4.9 –23

mL/100 g/min) and 14 term infants (CBF � 9.0 –73 mL/100

g/min). Volpe et al18 studied regional CBF in 17 asphyxiated term

infants during the acute stage of their illness and showed a sym-

metric decrease in CBF to the parasagittal regions, more marked

posteriorly than anteriorly. Those findings explain the ischemic

lesions related to impaired cerebral perfusion in the watershed

regions.

PET by using 18F-fluorodeoxyglucose evaluates the regional

cerebral metabolic rate (Fig 1). In neonates, the highest cerebral

metabolic rates for glucose are located in the primary sensorimo-

tor cortex, thalamus, brain stem, and cerebellar vermis. The cin-

gulate cortex, basal ganglia, and hippocampal regions may also

have a relatively high glucose metabolism compared with most of

the cerebral cortex.26 A recent study conducted on 60 infants,

including 24 infants with HIE,27 showed that cerebral glucose

metabolism increased with gestational age and that the standard-

ized uptake values were lower in infants with HIE than in healthy

term infants, especially in the subcortical white matter, thalamus,

and basal ganglia areas, and correlated with the degree of severity

of HIE, except for the basal ganglia. Batista et al28 suggested that

there is a transient increase in glucose metabolism in the basal

ganglia after perinatal hypoxia and that it may be associated with

excess glutamatergic activity in the basal ganglia, leading to severe

damage.

Single-Photon Emission CT. SPECT provides tomographic im-

ages of radiopharmaceutical distribution. It involves the inha-

lation or intravenous injection of xenon 133 (133Xe), with

technetium Tc99m hexamethylpropyleneamine oxime (99mTc-

HMPAO) or iodine 123 N-isopropyl-p-iodoamphetamine

(123I-IMP). Due to neonatal brain physiology and biodistribu-

tion, HMPAO is a more reliable tracer of CBF distribution in

neonates compared with adults.29

SPECT is a suitable bedside method that is cheaper and more

widely available than PET imaging. HMPAO and IMP only show

distribution and do not provide quantitative results, unlike xe-

non. The greatest disadvantage in using the SPECT technique in

children is the ionizing radiation. The technique also yields poor

resolution and requires a long examination time (20 –25 min-

utes). Data processing to obtain maps takes about 5 minutes. The

underlying mathematic model for data postprocessing is the

Kety-Schmidt model for the 133Xe and 123I-IMP or the micro-

sphere principle for the Tc99m tracers. Because the uptake of
99mTc-HMPAO is not linearly related to CBF, the maps obtained

are not quantitative in the current standardized settings and re-

quire special correction. The relative CBF maps can be statistically

evaluated compared with the healthy control to depict the regions

with abnormal perfusion.5

Xenon clearance, by using inhaled xenon gas, is another tech-

nique that is closely related to SPECT and has been extensively

used in adults and neonates.30 Patient motion is a serious limita-

tion of the technique, which, moreover, does not cover the whole

brain. The mean CBF with the xenon technique has been esti-

mated at around 50 mL/100 g/min in 7 healthy neonates31 and

9.5–11.7 mL/100 g/min in 22 preterm infants during the first 3

days of life.32 Changes in 123I-IMP uptake in neonates reflecting

relative CBF during the first month of life have been shown to be

related to myelination development.33 In term neonates, up-
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take was predominantly located in the thalami, brain stem, and

central cerebellum, with relatively less cortical activity, except

in the perirolandic cortex. Moreover, Pryds and Greisen32

showed that an intraindividual variation in CBF was positively

related to changes in partial pressure of carbon dioxide in ar-

terial blood and inversely related to changes in hemoglobin

concentration.

Brain Perfusion Measurements by Using Perfusion CT
Perfusion CT has been widely used in adults and can be per-

formed easily and rapidly. This technique provides a reliable

quantitative estimation of CBF, CBV, and MTT by using a

first-pass tracer methodology after intravenous injection of a

bolus of iodinated contrast material. It involves very rapid data

acquisition that is feasible in emergency situations.34,35 How-

ever, due to its invasive nature and radiation dose, very few

studies have included neonates. Data processing requires per-

fusion CT software using either rate-of-upslope estimation of

CBF or deconvolution analysis.5 Images of CBF, CBV, and

MTT maps are interpreted on a workstation with visual assess-

ment and quantitative analysis with ROIs. Wintermark et al36

assessed age-related variations in quantitative brain perfusion

CT in children from 7 days to 18 years of age without brain

abnormality, including 10 patients younger than 12 months

of age. The rCBF findings were consistent with other tech-

niques and showed age-specific variations with a peak at 2– 4

years of age. The variation in CBF estimates was due to more

pronounced age-related changes in MTT than in CBV.

Brain Perfusion Measurements by Using
Near-Infrared Spectroscopy
Near-infrared spectroscopy, described first by Jöbsis in 1977,37

can be used as a continuous noninvasive real-time monitoring

tool for assessment of cerebral oxygenation and hemodynamics.

The principles of NIRS are based on the relative transparency of

biologic tissues to light in the near-infrared spectrum (700 –1000

nm) and different absorption of light by different chromophores

in this spectrum (eg, hemoglobin and cytochrome C oxidase).

NIRS measures the concentration changes of oxy- and deoxyhe-

moglobin, which can be used to derive changes in total hemoglo-

bin (an indicator of cerebral blood volume) and hemoglobin

difference (indicates cerebral oxygenation).38 Using spatially

resolved spectroscopy, NIRS measures regional oxygenation sat-

uration and reflects the balance of tissue oxygen supply and de-

mand. In comparison with other techniques, application of NIRS

is relatively easier. Improved NIRS probes are now available in

different sizes to cover premature infants to term neonates. Al-

though NIRS monitors have been used in adult neurointensive

care units and theaters for some time now, the introduction of

these monitors into neonatal intensive care has been slow. In re-

cent years, several NICUs have started using this as part of the

routine decision-making process, particularly for the preterm

population.

Edwards et al39 first described the measurement of cerebral

blood flow, and Meek et al40 showed that low CBF on the first

day of life is a risk factor for severe intraventricular hemor-

rhage. Diffuse correlation spectroscopy is a newer NIRS tech-

FIG 1. Coronal (A) and axial (B) cerebral 18F-FDG PET images of a 9-month-old infant with tuberous sclerosis show multiple hypometabolic areas
in the frontal and temporal cortex. Courtesy of Prof. Eric Guedj, CHU Timone, Marseille, France.
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nique that offers a direct and continuous monitoring of micro-

vascular cerebral blood flow.41 Using hemoglobin difference as

an indicator of CBF, Tsuji el al42 described a high coherence

between CBF and mean arterial blood pressure and a strong

association of the loss of cerebral autoregulation with an in-

creased incidence of severe germinal matrix–intraventricular

hemorrhage or periventricular leukomalacia. The loss of auto-

regulation in the very preterm population was strongly related

to mortality.43

Following perinatal hypoxia-ischemia in term infants, CBF

and CBV were elevated and were associated with low oxygen

extraction and the loss of reactivity to CO2.44 This loss of the

autoregulatory mechanism with loss of cerebrovascular tone

happens during the first 24 hours after the insult before sec-

ondary energy failure ensues. In a recent study, regional oxy-

genation saturation increased and fractional tissue oxygen ex-

traction decreased after 24 hours in 18 neonates with poor

outcome following HIE.45 High tissue oxygenation values were

noted on day 1 following perinatal hypoxia and were signifi-

cantly higher in the group with abnormal 1-year outcome.46

These findings were further supported by a combined NIRS-

ASL study47: a strong correlation was noted between NIRS-

measured regional cerebral oxygen saturation and CBF mea-

sured by ASL in infants with severe encephalopathy. Specific

changes in cortical hemodynamics and oxygenation were de-

scribed in previous NIRS studies during and after neonatal

seizures (Fig 2).48

Brain Perfusion Measurements
Using Sonography
Kehrer et al49,50 have shown the feasi-

bility of measuring CBF volume with

Doppler sonography of the extracranial

cerebral arteries in infants. Another way

to assess overall CBF is to measure the

total blood flow to the brain (sum of

blood flow in the internal carotid arter-

ies and basilar artery) and to divide it by

the brain volume. Doppler sonography

is noninvasive, lacking radiation expo-

sure, innocuous, and suitable for bed-

side follow-up and has good interob-

server reproducibility.51 However, the

disadvantages include the absence of re-

gional CBF measurements, the use of an

estimated brain weight, the need for the

patient to be motionless for about 20

minutes, and strict compliance with a

standardized study protocol/meticulous

examination to achieve accurate and re-

liable measurements.50 In healthy term

neonates, the velocities in the ICAs and

basilar artery are between 15 and 35

cm/s.52 As shown with other techniques,

the values of CBF volume increased with

postmenstrual age from 33 mL/min at

34 weeks to 85 mL/min at 42 weeks.49

Approximate CBF (mL/100 g/min) was calculated by using an es-

timated brain weight (the equation was based on head circumfer-

ence measurements). CBF also increases from 21 to 23 mL/100

g/min after birth to 46 –53 mL/100 g/min at 6 months of age and

remains stable from 6 to 30 months of age, reflecting rising met-

abolic demand.53

Microbubble ultrasound is a new and reliable cerebral perfu-

sion imaging technique that provides a qualitative estimation of

cerebral perfusion and has been described in healthy adults and

patients with stroke.54 Yet, to our knowledge, no study has been

conducted on neonates, mainly because microbubble ultrasound

is not licensed for use in children.

Brain Perfusion Measurements by Using MR Imaging
Regarding practical aspects of MR imaging, one of the main ad-

vantages is that perfusion imaging is a part of the whole examina-

tion. The perfusion sequence could be added at the end of the

morphologic MR imaging, which is usually clinically required.

Dynamic-Susceptibility Contrast MR Imaging. The dynamic-sus-

ceptibility contrast MR imaging technique measures the T2 or

T2* decrease during the first pass of an exogenous endovascular

susceptibility contrast agent. DSC–MR imaging is a nonradiating

procedure, with high SNR and a higher spatial resolution than

PET and SPECT, in addition to offering fast acquisition times.

Regional hemodynamic changes can be assumed and different

parameters such as CBV, TTP, and MTT can be estimated to

calculate CBF. Parameters are calculated in a few minutes

FIG 2. Reconstructed images showing the changes in cerebral blood volume (�HbT) in the
dorsal and left and right lateral views during a seizure in a neonate with hypoxic-ischemic
encephalopathy. The upper axes show the changes in hemoglobin concentration spatially
averaged across the gray matter surface. Seven distinct time points are identified. All data are
changes relative to a baseline, defined as the mean of the period between 60 and 30 seconds
before the electrographic seizure onset. Reproduced from Singh et al.48
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by using commercially available software. However, the maps

provide only relative measurements. Quantification of CBF by

DSC is controversial, mainly due to the nonlinear relationship

between signal intensity and gadolinium concentration.55 Maps

can be interpreted visually or semiquantitatively by calculating

the ratio between the values in an ROI placed in the abnormal area

and an ROI placed in the contralateral area considered a normal

reference. Longitudinal studies involving repeated measurements

during a single scanning session are not possible due to the lack of

reliable absolute quantification. Despite the above-mentioned

advantages, DSC–MR imaging can be difficult to perform in in-

fants due to gadolinium administration. There have been fewer

studies of DSC–MR imaging in children, and particularly neo-

nates, than in adults.56-59 Hand injections are preferred over

power injections in infants, with less reproducibility. Wintermark

et al58 were the first to assess PWI in 5 term neonates with HIE on

early (days 2– 4) and late MR imaging (days 9 –11). On the early

MR imaging, a hyperperfusion pattern was detected in areas of

hypoxic-ischemic brain damage, corresponding to the reperfu-

sion phase. On the late scans, hyperperfusion persisted in the cor-

tical gray matter.

Phase-Contrast MR Imaging. One other noninvasive, accurate,

and reproducible MR imaging method has been reported in a

small number of studies.60,61 The blood flow in the internal ca-

rotid arteries and basilar artery at the base of the skull is measured

by using phase-contrast MR imaging, and the brain volume is

measured by using segmentation of anatomic MR images. Data

processing consists of multiplying the mean velocity across an

ROI (measured by the phase-contrast MR imaging sequence) by

the vessel area. Flow to the brain is computed as the sum of flow in

the 2 internal carotid arteries and the basilar artery. Brain volume

is estimated by using segmentation software by using a dedicated

neonatal brain segmentation algorithm. Mean CBF is computed

by dividing the total flow to the brain by the brain volume.

In the study by Varela et al,60 the results for 21 infants showed

good agreement with literature data, with a rapid increase during

the first year of life, from 25– 60 mL/100 mL of tissue/min. The

mean velocities (over the cardiac cycle, the area of each vessel and
all 3 arteries) were �20 cm/s in term neonates and rose to 30 cm/s

at 50 weeks. However, only mean overall
CBF can be assessed with this method.

Arterial Spin-Labeling. Brain perfusion
imaging by using arterial spin-labeling is
a noninvasive technique that uses en-
dogenous blood water as a freely diffus-
ible tracer. Arterial blood protons are
magnetically labeled with a radiofre-
quency inversion pulse applied below
the imaging section in the neck vessels
(Fig 1). Several labeling methods exist,
including continuous ASL, pulsed ASL,
and pseudocontinuous ASL.62 In con-
tinuous ASL, a long flow-induced inver-
sion pulse is applied. In pulsed ASL, a
short inversion pulse is applied to a

larger region of the neck. Pseudocon-

tinuous ASL is a hybrid method that uses

a train of short radiofrequency pulses to mimic the effects of con-

tinuous ASL (Fig 3). The best recommended ASL method is the

pseudocontinuous ASL labeling method, mainly because of a

higher SNR and less labeling artifacts.63,64 However, there is a lack

of data in the literature regarding the specific neonatal popula-

tion, and more study is needed.

A labeled image is acquired after a sufficient time to allow

the labeled spins to reach the imaging section, known as the

postlabeling delay. A control image is acquired without label-

ing. Subtraction of the 2 images yields a perfusion-weighted

image. Because the signal difference is only 0.5%–1.5% of the

full signal, multiple repetitions are needed to improve the sig-

nal-to-noise ratio. Subsequently, to obtain a quantitative per-

fusion map, a quantitative model is required to calculate the

relationship between the perfusion-weighted image and CBF.

Certain technical adjustments to the imaging parameters are

required to account for the fundamental differences between the

pediatric and adult populations.65,66 It is challenging to perform

ASL MR imaging in neonates due to the low baseline CBF com-

pared with children and adults, coupled with the low SNR of the

method. As an example, velocities are lower in neonates than in

children, increasing with postmenstrual age,67 and the optimum

postlabeling delay for contrast-to-noise ratio has been correlated

with the mean velocity in the carotid arteries.68

Moreover, in children and neonates, there is a physiologic

improvement in the SNR compared with healthy adults due to

a longer tissue T1, longer blood T1, and the higher blood-brain

partition coefficient of water.65 Blood T1 variations have a

greater effect on perfusion than tissue T1 variations.69 Varela

et al70 established a linear correlation between the inverse of

blood T1 and hematocrit in 12 neonates. This may offer the

possibility of blood T1 estimations from recent hematocrit

measurements.

Measuring CBF in neonates by using ASL therefore requires

several adaptations of acquisition and related parameters

used for quantification. Another point is the lack of standard-

ization of image-processing methods. In clinical practice, CBF

maps are generally automatically generated by the manufac-

FIG 3. Schematic diagram of ASL shows the labeling plane (red box) in the neck and the imaging
volume (green box). A, Acquisition of labeled image after a delay to allow the labeled blood to
flow into the brain tissue. B, Acquisition of the control image.
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turer workstation with assumed or measured quantification

parameters.

A few studies have been conducted in neonates by using ASL.

Miranda et al71 were the first to show the feasibility of pulsed ASL

at 1.5T in 29 unsedated healthy preterm infants at term-equiva-

lent age and in term neonates. Other studies in healthy children

show that ASL appears sensitive to regional and age-related dif-

ferences in CBF in preterm, term neonates, and infants at 3

months72 and from 3 to 5 months of age.73 These results are con-

sistent with previous studies demonstrating regional variation in

brain maturation. Some studies have been conducted in asphyx-

iated neonates, showing early hyperperfusion in brain areas sub-

sequently exhibiting injury,74 and that regions with low ADC in-

tensity are highly correlated with co-located regions of increased

ASL CBF intensity (Fig 4).75 Asphyxiated neonates treated with

hypothermia developing brain injury usually displayed hypoper-

fusion on day of life 1 and hyperperfusion on day of life 2–3 in the

study of Wintermark et al.74 If performed during the second week

of life, MR imaging reveals rather a hypoperfusion in the thalamus

of infants with injury on MR imaging.76 De Vis et al77 showed a

significant correlation between a higher perfusion in the basal

ganglia and thalami, perfusion on day of life 2–7, and a worse

neurodevelopmental outcome in neonates with HIE.

To summarize, ASL is a noninvasive method without ve-

nous cannulation or radiation that is repeatable within the

same session and provides absolute quantification of CBF.

Given the noninvasiveness of the technique, it is highly suitable

for neonates.

CONCLUSIONS
Brain perfusion may play a role in neonatal brain injury and

therefore serves as a complementary biomarker to help determine

neuroprotective therapeutic strategies. With the development of

noninvasive methods, assessment of neonatal brain perfusion has

become easier. ASL is a very promising tool for assessing neonatal

brain perfusion: It is a totally noninvasive method easily available

and providing quantitative regional CBF values. However, the

method warrants technical adjustments to make it more widely

available.
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