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ORIGINAL RESEARCH
ADULT BRAIN

Body Temperature Modulates Infarction Growth following
Endovascular Reperfusion

X S. Dehkharghani, X M. Bowen, X D.C. Haussen, X T. Gleason, X A. Prater, X Q. Cai, X J. Kang, and X R.G. Nogueira

ABSTRACT

BACKGROUND AND PURPOSE: The neuronal substrate is highly sensitive to temperature elevation; however, its impact on the fate of
the ischemic penumbra has not been established. We analyzed interactions between temperature and penumbral expansion among
successfully reperfused patients with acute ischemic stroke, hypothesizing infarction growth and worse outcomes among patients with
fever who achieve full reperfusion.

MATERIALS AND METHODS: Data from 129 successfully reperfused (modified TICI 2b/3) patients (mean age, 65 � 15 years) presenting
within 12 hours of onset were examined from a prospectively collected acute ischemic stroke registry. CT perfusion was analyzed to
produce infarct core, hypoperfusion, and penumbral mismatch volumes. Final DWI infarction volumes were measured, and relative
infarction growth was computed. Systemic temperatures were recorded throughout hospitalization. Correlational and logistic regression
analyses assessed the associations between fever (�37.5°C) and both relative infarction growth and favorable clinical outcome (90-day
mRS of �2), corrected for NIHSS score, reperfusion times, and age. An optimized model for outcome prediction was computed by using
the Akaike Information Criterion.

RESULTS: The median presentation NIHSS score was 18 (interquartile range, 14–22). Median (interquartile range) CTP-derived volumes were:
core � 9.6 mL (1.5–25.3 mL); hypoperfusion � 133 mL (84.2–204 mL); and final infarct volume � 9.6 mL (8.3–45.2 mL). Highly significant correlations
were observed between temperature of �37.5°C and relative infarction growth (Kendall � correlation coefficient � 0.24, P � .002). Odds ratios
for favorable clinical outcome suggested a trend toward significance for fever in predicting a 90-day mRS of �2 (OR � 0.31, P � .05). The
optimized predictive model for favorable outcomes included age, NIHSS score, procedure time to reperfusion, and fever. Likelihood ratios
confirmed the superiority of fever inclusion (P � .05). Baseline temperature, range, and maximum temperature did not meet statistical
significance.

CONCLUSIONS: These findings suggest that imaging and clinical outcomes may be affected by systemic temperature elevations, pro-
moting infarction growth despite reperfusion.

ABBREVIATIONS: AIC � Akaike Information Criterion; AIS � acute ischemic stroke; IQR � interquartile range; mTICI � modified TICI; R � tissue residue function;
Tmax � time-to-maximum of the tissue residue function

The exquisite temperature sensitivity of the neuronal substrate

has been detailed extensively since initial reports in canine

models in the early 20th century.1 The development of pyrexia

following acute ischemic stroke (AIS) has been well-documented

and has been tied to stroke severity, infarct size, and poor func-

tional outcomes, as well as to both short-term and long-term

mortality.2-6

The untoward impact of even small brain temperature eleva-

tions during ischemic injury is well-described, with histopatho-

logic evidence of irreversible ischemic injury varying substantially

with minor temperature changes, and even across physiologic
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ranges.7 It remains unclear, however, whether temperature eleva-

tion is associated with poor outcome as a causal factor driving

stroke severity and penumbral expansion or as an epiphenome-

non to inherently severe or extensive ischemic injury.

The goals of this study were to analyze the impact of temperature

elevation on the fate of at-risk tissues as derived from the penumbra

paradigm of cerebrovascular ischemia by using CTP. We studied the

interaction of systemic temperature fluctuations with expansion of

infarcted tissues in a cohort of successfully reperfused patients with

AIS, hypothesizing greater relative infarction growth as a function of

temperature elevation in the early aftermath of AIS.

MATERIALS AND METHODS
Study Design
We retrospectively reviewed a prospectively collected endovascu-

lar stroke therapy registry of 605 consecutive patients at the Mar-

cus Stroke and Neuroscience Center at Grady Memorial Hospital,

spanning December 2010 to September 2014, with approval of the

institutional review board. Patients were included for analysis if

they met all of the following criteria: 1) AIS due to cerebrovascular

large-vessel occlusion, including the internal carotid artery, ante-

rior cerebral artery, and/or the middle cerebral artery (M1 and/or

M2 segments), or vertebrobasilar circulation on CTA; 2) time

from last known well to groin puncture, �12 hours; 3) successful

endovascular reperfusion (mTICI 2b/3); and 4) full CTP datasets

obtained and technically adequate for analysis of ischemic core

and penumbral volumes.

Imaging Protocol
All patients underwent an institutional imaging protocol, includ-

ing noncontrast CT, CTA, and CTP. CT was performed on a 40-

mm, 64 – detector row clinical system (LightSpeed VCT; GE

Healthcare, Milwaukee, Wisconsin). Helical noncontrast CT (120

kV, 100 –350 auto-mA) was performed from the foramen mag-

num through the vertex at a 5.0-mm section thickness. In the

absence of visible intracranial hemorrhage during real-time eval-

uation by a radiologist and stroke neurologist, 2 contiguous CTP

slabs were obtained for 8-cm combined coverage of the supraten-

torial brain, obtained at eight 5-mm sections per slab. Cine mode

acquisition (80 kV, 100 mA) permitting high-temporal-resolu-

tion (1-second sampling interval) dynamic bolus passage imaging

was obtained following the administration of 35 mL of iodinated

contrast (iopamidol, Isovue 370; Bracco, Princeton, New Jersey),

power injected at 5 mL/s through an 18-ga or larger antecubital IV

access. Contrast administration was followed by a 25-mL saline

flush at the same rate. Lastly, helical CTA (120 kV, 200 –350 auto-

mA) was performed from the carina to the vertex (section thick-

ness/interval, 0.625/0.375 mm) following IV administration of 70

mL of iodinated contrast injected at 5 mL/s and followed by a

25-mL saline flush. All images were transferred to a separate

workstation for analysis (Apple Mac Pro; Apple, Cupertino, Cal-

ifornia) by using a third-party viewer (OsiriX 64-bit; http://www.

osirix-viewer.com).

CT Perfusion Analysis
All perfusion imaging was processed by using the fully user- and

vendor-independent software platform RApid processing of Per-

fusIon and Diffusion (RAPID version 4.5; iSchemaView, Stan-

ford, California) to produce irreversible infarction core and total

hypoperfused tissue volume estimates, detailed below. Details of

the CTP processing pipeline were provided previously.8 Briefly,

following preprocessing steps correcting rigid body motion, arte-

rial input function selection was performed and deconvolved

from the voxel time-attenuation course using a delay-insensitive

algorithm for isolation of the tissue residue function (R). Time-

to-maximum (Tmax) of R was determined on a voxelwise basis,

with Tmax maps thresholded at 6 seconds and overlaid on the

source CTP data. All analyses and data collection were performed

under the direct supervision of a dedicated neuroradiologist

(S.D.) with subspecialty certification and �8 years of experience

in advanced clinical stroke imaging and research, and blinded to

the clinical and outcome data.

CBF expressed in milliliters/100 g/min was computed on a

voxelwise basis for estimation of irreversibly infarcted (core) tis-

sues determined at relative CBF �30% of contralateral normal

tissues, as conducted recently in the clinical and stroke trial set-

ting.8,9 Processed maps were automatically generated and over-

laid on source images for review purposes. A mismatch volume

defining the putative ischemic penumbra was calculated as the

difference between Tmax �6 volumes and relative CBF core in-

farction volumes (Fig 1).

Temperature Analysis
Systemic temperatures were recovered from the patient medical

record, beginning from the initial presentation and continuously

to the time of follow-up MR imaging, up to every 15 minutes, with

minima, maxima, and total ranges collected for each patient.

Tympanic temperatures were preferentially used for analysis. In

addition to maximum temperature, the following temperature-

related parameters were determined for each patient: 1) presen-

tation baseline temperature, 2) temperature range (maximum-

minimum), and 3) dichotomized fever (defined as a temperature

of �37.5°C during the recording period).10 Patient records were

reviewed for positive cultures or other clinical factors indicating

the presence of profound systemic infection during hospitaliza-

tion and up to the time of final follow-up imaging. Antipyretic

administration was obtained from the medical record. Data on

procedure duration for endovascular thrombectomy and the use

of general or monitored anesthesia care were collected from in-

traoperative reports.

Imaging Outcome
All patients underwent follow-up MR imaging with diffusion-

weighted imaging for determination of final infarction volumes be-

fore discharge. A semiautomated DWI lesion mask and segmenta-

tion methodology were used, with full details of the analysis pipeline

elaborated previously.8 Final infarct volumes were used to compute

relative infarction growth, defined as [(final infarction volume–ini-

tial CTP core)/initial CTP mismatch], and were computed for each

patient as a measure of the relative expansion of initial infarction core

by incorporation of the initial at-risk volume. Imaging analysis and

final infarction volume measures were conducted under the direct

supervision of the same neuroradiologist (S.D.), again blinded to

other clinical, imaging, and outcome data.
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Clinical Outcome
Ninety-day mRS was determined by mRS-certified investigators

on clinical follow-up or by phone interview. Favorable clinical

outcomes were assigned at a 90-day mRS of �2.

Statistical Analysis
Continuous variables are reported as mean � SD or median and

interquartile ranges. The Kendall � correlation coefficient test

(denoted as �) was applied to assess the nonlinear relationship

between temperature-related parameters (baseline temperature,

range, maximum, and fever �37.5°C) versus the primary out-

come variable of relative infarction growth.

A linear regression model was fitted with relative infarction

growth as the response variable and age, presentation NIHSS,

last-known-well time to reperfusion, and procedure time to rep-

erfusion as covariates, to establish the correlation of temperature

with relative infarction growth, corrected for potentially con-

founding variables.

The impact of temperature on the likelihood of favorable clin-

ical outcome, mRS � 2, was secondarily tested. The Kendall �

correlation between the same temperature profiles described

above and favorable clinical outcome was computed with statis-

tical significance set to P � .05. An additional 2-sample t test was

conducted to test the difference in likelihoods of favorable clinical

outcome as a function of differences in systemic temperature

ranges and fever. Odds ratios for favorable clinical outcome were

evaluated in binary logistic regression, with a 90-day mRS of �2

as the outcome variable, expressed as OR and 95% confidence

intervals. Age, presentation NIHSS score, initial core volume,

procedure time, time to reperfusion, temperature change from

baseline, range, maximum, and fever (temperature of �37.5°C)

were assessed in the development of a multivariable model for

prediction of favorable clinical outcome

by using the Akaike Information Crite-

rion (AIC) for model selection. Optimal

model selection was achieved by minimi-

zation of AIC, and the final model was

tested by both a goodness-of-fit test and a

likelihood ratio to inform the significance

of inclusion of temperature in the predic-

tion of favorable clinical outcome. Statis-

tical analysis was performed in R (R sta-

tistical and computing software; http://

www.r-project.org/).

RESULTS
One hundred twenty-nine patients of the

605 consecutive patients with AIS who

underwent endovascular therapy during

the study period met the inclusion criteria

for the current analysis. The main reason

for exclusion from the study was the lack

of routine CTP preceding thrombectomy

early in the study period, before full in-

corporation of CTP into our stroke imag-

ing protocol, affecting 373 patients. The

remainder were excluded due to some

combination of unsuccessful reperfusion,

thrombectomy outside the 12-hour window, and isolated ex-

tracranial occlusions. Demographic details of the study popula-

tion are summarized in Table 1. Briefly, among patients meeting

all the inclusion criteria, the median age was 65 years (interquar-

tile range [IQR], 18 –94 years). Sixty were women (median age,

68.5 years; IQR, 17–94 years); 69 were men (median age, 64 years;

IQR, 30 – 86 years). The median baseline NIHSS score was 18

(IQR, 14 –22). The site of vessel occlusion was distributed as fol-

lows: intracranial ICA � 17; extracranial ICA � 2; M1 � 63;

M2 � 24; anterior cerebral artery � 4; vertebrobasilar � 1; tan-

dem cervical ICA with intracranial ICA or proximal MCA le-

sions � 18.

Median presentation CTP core infarction volume was 9.6 mL

(IQR, 1.5–25.3 mL), and the median hypoperfused volume at

Tmax � 6 seconds was 132.6 mL (IQR, 84.2–204 mL). Median

procedure time to reperfusion was 58.0 minutes (IQR, 38.5–94.5

minutes). Forty-four patients (34.1%) received general anesthe-

sia. The median time from last known well to reperfusion was 414

minutes (IQR, 294.5–572.3 minutes), and median CTP to reper-

fusion was 119 minutes (IQR, 84 –162.5 minutes). A total of 67

(52.9%) patients achieved modified TICI (mTICI) 2b, and 62

(48.1%) achieved mTICI 3 reperfusion. The median time from

CTP to follow-up MR imaging was 26.8 hours (IQR, 20.0 – 47.2

hours). The median final DWI infarct volume was 19.6 mL (IQR,

8.3– 45.2 mL). The mean 90-day mRS score was 2, and 77 (59.7%)

patients achieved a favorable clinical outcome as characterized by

a 90-day mRS of � 2. The 90-day mortality was 8.5% (11

patients).

The mean of the population temperature minima was 35.3°C,

and maxima, 37.9°C. A median per-patient temperature fluctua-

tion in the population of 2.4°C (IQR, 1.8°C–3.3°C) was observed.

FIG 1. CT perfusion mismatch maps for infarct core and penumbral volume estimates. Repre-
sentative sample of the CT perfusion analysis pipeline with estimated infarction core (A) deter-
mined as relative cerebral blood flow �30% of normal and total hypoperfused tissue volume (B)
measured from regions of time-to-maximum of residue function of �6 seconds. Lesion esti-
mates (white overlays) produced from sequential sections obtained from presentation CT
perfusion in a 62-year-old woman presenting with acute left MCA syndrome. Segmented le-
sions are overlaid on raw perfusion images for review purposes, and automated lesion volumes
are produced as shown. Penumbral mismatch is computed from the difference between esti-
mated lesion volumes and is summed for each of 2 contiguous perfusion slabs.
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The median temperature increase from presentation baseline was

1.6°C (IQR, 1.0°C–2.5°C). Relative infarction growth corre-

sponding to the first and third quartiles of temperature elevation

was 19.0% and 66.6%, respectively. Ninety-one patients (70.5%),

reached a maximum temperature of �37.5°C. The median infarc-

tion expansion was 8.3 mL (IQR, 22.0 mL). Ninety-five patients

(73.6%) had expansion of their infarction; of these, 71 (74.7%)

also had fever. All except 4 patients (96.9%) received aspirin ther-

apy; 91 patients (70.5%) received at least 1 dose of acetaminophen

during hospitalization. No patients were found to have evidence

of severe systemic infections or septicemia prior to their final im-

aging analysis.

Imaging Outcomes
The Kendall � correlation between fever and relative infarction

growth demonstrated significant associations among patients

with a temperature of �37.5°C (� � 0.27, P � .001). Fever ex-

ceeding 37.5°C did not, however, correlate with the size of the

initial core (P � .14). Additionally, initial core volume had a small

but significant association with relative infarction growth (� �

�0.24, P � .001). When corrected for the potential confounders

of age, procedure time, onset to reperfusion, initial NIHSS score,

initial CTP predicted core volume, and time from symptom on-

set, the presence of fever (�37.5°C) remained significantly corre-

lated with infarction expansion (� � 0.24, P � .002). By compar-

ison, correlations for baseline temperature at presentation (� �

0.06, P � .38), range (� � 0.01, P � .89), and maximum (� � 0.12,

P � .053) did not reach statistical significance when adjusted.

Clinical Outcomes
Similar results were observed in a 2-sample t test examining the

relationship among fever (P � .002), temperature range (P �

.03), and absolute temperature maximum (P � .03) and favorable

clinical outcome, while statistical significance was not achieved

for baseline temperature or temperature range in relation to fa-

vorable clinical outcome.

The results of binary logistic regression with model selection

by using AIC produced an optimized model for prediction of

favorable clinical outcome, which included variables of age, NIHSS

score, procedure time, and fever of �37.5°C, while initial core vol-

ume; baseline temperature, range, and maximum; and time from

symptom onset to reperfusion did not meet optimization criteria in

AIC (Table 2). The likelihood ratio testing confirmed the superiority

for model inclusion of fever (P � .05) compared with the elimination

of fever from the model, and the goodness-of-fit test further sup-

ported the robustness of the selected model for prediction of favor-

able clinical outcome (P � .05).

Adjusted odds ratios for favorable clinical outcome were com-

puted, suggesting a possible trend toward significance for fever in

the likelihood of 90-day mRS of �2 (OR � 0.31; 95% CI, 0.08 –

0.97; P � .056). The remaining temperature-related parameters

did not approach statistical significance (P � .05).

DISCUSSION
These findings lend further support to the hypothesized, detri-

mental influence of temperature elevation on the fate of ischemic

tissues in the early aftermath of cerebrovascular injury. The sen-

sitivity of the neurovascular unit to potentially subclinical tem-

perature elevations and, conversely, the neuroprotective attri-

butes of therapeutic hypothermia have been observed in humans,

as well as in nonhuman experimental animal models.11,12 How-

ever, this study represents, to our knowledge, the first investiga-

tion of the interaction between systemic temperature change and

the fate of reperfused tissues following AIS. In this study, reaching

febrile temperatures during hospitalization impacted not only

relative infarction growth in a cohort of reperfused patients with

AIS but moreover suggested a possible negative influence on the

likelihood of favorable clinical outcome. This association re-

mained significant even when correcting for known confounders

such as age, procedure time, initial stroke severity (NIHSS score),

and CTP predicted core size, as well as all reperfusion and proce-

Table 1: Patient characteristics and temperature profilea

Characteristics
Mean age (yr) 65 (range, 18–94)
NIHSS score 18 (14–22)
Women 60 (46.5%)
Presentation core infarction volumeb 9.6 mL (1.5–25.3)
Hypoperfused volumec 132.6 mL (84.2–204)
Occluded vessels n (%)

Intracranial ICA 17 (13.2%)
Extracranial ICA 2 (1.6%)
M1 MCA 63 (48.8%)
M2 MCA 24 (18.6%)
ACA 4 (3.1%)
Vertebrobasilar 1 (0.8%)
Tandem 18 (14%)

Reperfusion score
mTICI 2b 67 (52.9%)
mTICI 3 62 (48.1%)

Last known well to reperfusion 414 min (295–572)
CTP to reperfusion 119 min (84–162)
Procedure time to reperfusion 58.0 min (38.5–94.5)
Total procedural duration 77 min (51–118)
CTP-to-MRI time 26.8 hr (20–47.2)
Last known well to MRI 30.6 hr (24.0–51.2)
General anesthesia (No.) 44 (34.1%)
Aspirin therapy (No.) 125 (96.9%)
Received acetaminophen (No.) 91 (70.5%)
Final infarct volume 19.6 mL (8.3–45.2 mL)
Mean 90-day mRS 2
Favorable clinical outcome

(mRS �2) (No.)
77 (59.7%)

90-day mortality (No.) 11 (8.5%)
Population temperature minima (mean) 35.3°C
Population temperature maxima (mean) 37.9°C
Per-patient temperature fluctuation 2.4°C (1.8°C–3.3°C)
Temperature increase from baseline 1.6°C (1.0°C–2.5°C)

Note:—ACA indicates anterior cerebral artery.
a Data are reported as proportions and median (IQR), unless otherwise stated.
b Relative cerebral blood flow �30% of contralateral normal tissues.
c Tmax of �6 seconds.

Table 2: Optimal model for prediction of favorable clinical
outcome: variable selection by Akaike Information Criteriona

Variable Odds Ratio 95% CI P Value
Fever (�37.5°C) 0.31 0.09–0.96 .052
Age 0.96 0.92–0.99 .007
Total procedure time 0.99 0.98–0.995 .003
NIHSS score 0.84 0.75–0.92 �.001

a Variable selection using Akaike Information Criterion minimization, indicated by the
goodness-of-fit test (P � .05), and the likelihood ratio test for inclusion of fever (P �
.041) vs exclusion of fever in the prediction of favorable clinical outcome.
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dural times. Although these variables demonstrated significant

associations, in the development of a parsimonious and opti-

mized model, only age, procedure time, and initial NIHSS score

met inclusion in the final AIC model, in keeping with findings in

recent trials reporting that the association between endovascular

therapy and good functional outcomes is not strictly time-depen-

dent among patients presenting within 12 hours.13

Our findings add to earlier work establishing the association be-

tween poor long-term outcome and even small increases in systemic

temperatures.5,14,15 The influence of systemic temperature changes

on the rescue or progression of putatively at-risk brain tissues is likely

multifactorial and may be nonlinear; accordingly, within our analy-

sis, the modest but highly significant correlation between elevated

temperatures and relative infarction growth may belie the overall

complexity of this relationship. Nevertheless, just as therapeutic hy-

pothermia regimens aim for the achievement of a predefined mini-

mum temperature to achieve neuroprotection, the negative influ-

ence of temperature elevation in this study was observed at a discrete

febrile temperature (�37.5°) defined a priori.16,17 Importantly, ad-

mission temperatures were not significantly associated with the mea-

sured outcomes, in line with existing studies suggesting that the ef-

fects of temperature elevation may more commonly manifest hours

after the initial injury.14,15

Pyrexia represents an adaptive response to numerous exoge-

nous or endogenous stimuli, though particular definitions for fe-

ver are inconsistent.18 In the context of neurologic diseases, re-

ported fever thresholds vary, including 37.5°C, which we used in a

conservative first approximation of the hypothesized interaction

in this study.10 While other fever thresholds could be used in such

investigations, our selection was intended to reasonably represent

conventions within the literature. For this study, we examined the

influence of systemic temperatures on the expansion of initial

infarction estimates relative to predicted penumbral volumes.

Systemic modes of thermometry were used, given their nearly

universal availability and known association with NIHSS severity

and clinical outcome.5,6,19,20 More recently, dedicated brain tem-

perature estimates have been achieved noninvasively by MR im-

aging, expanding the potential for direct brain thermometry be-

yond the costly and invasive approaches to temperature probe

implantation.19,21-23 Noninvasive brain thermometry has em-

phasized the potential for significant differences between brain

and body temperatures, decoupling of the brain-systemic temper-

ature gradient during brain injury, and the presence of intracere-

bral temperature gradients, which may themselves differ between

injured and noninjured tissues.19,21,22 While the influence of sys-

temic temperature elevations on ischemic expansion is apparent

from this and other studies, the impact of more specific signatures

of brain spatial and temporal temperature gradients remains un-

certain and requires continued investigation.

We acknowledge a number of study limitations, particularly

those inherent in the retrospective nature of the analysis. These

results were obtained from a single-institution prospectively col-

lected stroke registry. Analysis included primarily objective,

quantitative data such as systemic temperatures and a fully auto-

mated, user-independent software environment for CT perfusion

analysis as reported recently in the clinical and trial setting for

stroke imaging analysis.24-26 The absolute error of CTP may be

non-negligible. However, we contend that the use of a validated

user-independent platform for analysis is in line with contempo-

rary clinical and trial implementations of CTP, and we would not

anticipate that potential errors relating to such inaccuracies

would impart specific bias significantly affecting the relationship

between infarct expansion and temperature.8,24,26 Systemic tem-

peratures were primarily tympanic, as detailed in the study “Ma-

terials and Methods.” Occasional variability in this respect relates

to several factors that could not be controlled within the retro-

spective design, including patient condition, location within the

hospital, and nursing-specific variables requiring the use of uri-

nary catheter temperatures in some circumstances. We believe the

systematic bias related to temperature acquisition from different

sites to be minor because the concordance between temperatures

collected from standard locations is high.27

Several potential medications administered during hospitaliza-

tion may have an impact on systemic temperatures. Principally, an-

tipyretics such as aspirin and acetaminophen and anesthetics admin-

istered during the intervention may affect systemic or brain

temperature.28,29 In this study, most patients received aspirin and

acetaminophen, and all received anesthetics during endovascular

therapy. Unfortunately, sample size limitations precluded direct

analysis of the relationship between antipyretic exposure, fever, and

ischemic expansion. While this may affect the temperature profile of

an individual patient, the goals of this study were to establish the

relationship between febrile temperatures and relative infarction

growth, irrespective of external influences on temperature profile.

In this study, we aimed to isolate the impact of temperature

elevation on relative infarction growth and, to this end, selected a

cohort of revascularized patients (mTICI 2b/3). We acknowledge

that heterogeneity in full reperfusion and infarction evolution

may exist across this cohort, given the inclusion of mTICI 2b, as

well as variability in time to follow-up MR imaging; however,

previous studies have indicated generally high accuracy in the

ability of DWI obtained in the early stroke aftermath (�5 days) to

predict chronic infarction volumes and clinical outcomes.30,31

Last, we acknowledge that the duration of time spent at or

above the threshold temperature for fever could influence both

the rate and extent of relative infarction growth. Unfortunately,

this retrospective investigation was not powered to assess such

interactions. Further study of a potential dose- and time-depen-

dent response of infarction expansion and fever in a larger popu-

lation of matched patients is thus warranted.

CONCLUSIONS
These preliminary findings suggest that temperature dysregula-

tion may potentiate neuronal injury following acute ischemic

stroke, compelling further investigation into the mechanistic and

temporal relationship in larger cohorts.20,29,32,33 Infarction pro-

gression despite reperfusion is well-documented and multifacto-

rial and not yet fully understood.34 We propose that the relative

contribution of temperature elevation remains a comparatively

under-recognized factor potentially modulating infarction ex-

pansion despite reperfusion. Viable penumbra can be found up to

48 hours following stroke onset, during which time temperature

dysregulation may drive ischemic expansion.35 These findings

suggest that neuronal fate may be affected by mild temperature
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changes, motivating future work to further elaborate the nature of

this relationship and to advance our understanding of tempera-

ture as a biomarker in prognostication following ischemic stroke.
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