Treatment of traumatic carotid-cavernous fistula using detachable balloon catheters.

G M Debrun

http://www.ajnr.org/content/4/3/355

This information is current as of June 21, 2024.
Treatment of Traumatic Carotid-Cavernous Fistula Using Detachable Balloon Catheters

Gerard M. Debrun

The goal of therapy in patients with traumatic carotid-cavernous fistulas is to occlude the fistula, preferably while maintaining the carotid blood flow. Surgical techniques that treat the fistula remote from the cavernous sinus often cannot maintain carotid patency. Various interventional techniques using detachable balloons have been developed. The most common technique uses the endarterial route, introducing the balloon catheter in the neck or the groin. If the balloon is detached in the cavernous sinus, the carotid blood flow will be preserved. A second approach uses the venous retrograde route through the jugular vein, inferior petrosal sinus, and cavernous sinus. Elegant and safe, this method is appropriate when the fistula drains posteriorly. A third approach involves surgical exposure of the cavernous sinus and direct introduction of the balloon. This is sometimes the only recourse when the fistula has been previously treated with internal carotid ligation.

Traumatic carotid-cavernous fistulas are caused by injury to the cavernous portion of the internal carotid artery. Generally there is only one hole in the carotid artery and the external carotid branches are normal. Traumatic fistulas must be distinguished from spontaneous carotid-cavernous fistulas, which always have a blood supply from the external carotid branches and tiny branches from the internal carotid artery to the cavernous sinus that are too small to be occluded with a detachable balloon. The internal carotid artery should never be sacrificed in these cases. Occasionally such fistulas heal spontaneously or can be occluded by embolization of the external carotid branches.

In treating traumatic carotid fistulas with detachable balloons, three different therapeutic approaches should be considered [1–4]: (1) the endoarterial route, (2) the venous route, and (3) direct placement of the balloon in the cavernous sinus at surgery.

Treatment Considerations

Anatomic Peculiarities of the Internal Carotid Artery

A previous intracranial or cervical ligation of the carotid artery precludes the endoarterial route. A wide angle of the origin of the internal carotid artery, almost perpendicular to the common carotid artery, is usually followed by a sharp loop or kink that makes catheterization of the internal carotid artery difficult and risky. Also, a complete loop of the internal carotid below the base of the skull will make the detachment of the balloon much more difficult. Atheromatous stenosis and/or ulcerated plaque at the origin of the internal carotid increases the risk of thrombosis or embolism.

Location of the Fistula and Nature of the Venous Drainage

The exact location of the fistula and its size are demonstrated in most cases by vertebral angiography with compression of the carotid artery in the neck on the side of the fistula. When this fails, more sophisticated techniques can be attempted, such as the use of a double-lumen balloon catheter with the balloon occluding the internal carotid artery as contrast is slowly injected through the second lumen. The venous drainage is often multidirectional: anteriorly to the superior and inferior ophthalmic veins, posteriorly to the superior and inferior petrosal sinuses, inferiorly to the pterygoid plexus, superiorly to the sylvian veins, and medially to the contralateral cavernous sinus.

The choice between the endoarterial route and the venous route depends on anatomic considerations. If the fistula is anterior and the venous drainage is totally or mainly anterior to the ophthalmic veins, the patient has severe proptosis and chemosis and risks rapid loss of vision. Retrograde venous navigation through the superior ophthalmic vein is virtually impossible in such cases, making the endoarterial route the preferred alternative. If the fistula is posterior and the venous drainage is mainly or exclusively posterior, the inferior petrosal sinus is dilated and connects with the internal jugular vein. The retrograde venous route is then preferable [1–3].

In most cases both anterior and posterior venous drainage is present. Whenever the inferior petrosal sinus is dilated and the fistula is more posterior than anterior, the venous route should be tried first. However, the failure rate is relatively high, either because it is impossible to enter the inferior petrosal sinus or because the cavernous sinus is compartmentalized and the balloon does not reach the level of the fistula [1].

Direct Puncture of the Carotid Artery or Jugular Vein in the Neck or Puncture of the Femoral Artery or Vein

The femoral approach is usually ideal. It is easy to install an 8 French or 9 French sheath in the femoral artery or vein, and the attending physician is protected from scattered radiation. The cervical approach is mandatory when the femoral route is contraindicated or when tortuous vessels obviate positioning the sheath in the internal carotid artery. Direct insertion of an 8 French or 9 French sheath into the carotid artery is difficult and involves a high risk of dissecting the internal carotid with the guide and dilator. The...
patient must remain intubated for several hours after removal of the
sheath in order to guard against the development of a devastating
cervical compressing hematoma.

Size and Capacity of the Balloon
The latex balloons have different shapes and sizes. They can be
inflated with 0.1–3 ml of liquid, resulting in a balloon diameter
between 3 mm and 3 cm. The largest balloon capable of entering the
cavernous sinus is generally the best and should be tried first.
When the fistula is very large, however, a spherical balloon 2 cm in
diameter may bulge through the fistula with a risk of occluding the
internal carotid artery. If this is the case, the carotid artery cannot
be preserved. The fistula will be cured but the carotid artery will be
permanently thrombosed.

Fluid Content of Balloon
Both iodinated contrast materials and polymerizing substances
have advantages and disadvantages. A balloon inflated with pure
contrast material will progressively deflate, possibly causing a false
aneurysm. These pseudoaneurysms are generally asymptomatic,
but become symptomatic when very large. If the patient develops
oculomotor nerve palsy or retroorbital pain, the pseudoaneurysm
must then be treated either with another detached balloon or by
permanent occlusion of the internal carotid artery with a balloon
detached in the siphon at the level of the neck of the pseudoaneu-
rysm. The advantage of an iodine-inflated balloon is that if oculo-
motor nerve palsy occurs, balloon deflation will usually signal com-
plete recovery from the palsy.

A balloon inflated with a polymerizing substance will produce
better anatomic results with minimal or no residual aneurysm at the
level of the fistula. However, the balloon will remain permanently
solid, with the concomitant risk of poor or incomplete recovery from
oculomotor nerve palsy developing after detachment of the balloon.
The risk is probably low when the balloon is equal to or less than 1
cm in diameter, but very high with balloons approaching 2 cm in
diameter.

If many balloons have to be detached in a large cavernous sinus,
the last balloon should be inflated with silicone to occlude the
fistula. The other balloons must be inflated with iodine so that they
can shrink and decrease their mass effect. It is desirable to keep
the number of detached balloons to a minimum. Latex has higher
elasticity than Silastic, and a fistula can be treated with a smaller
number of latex than of Silastic balloons.

Failure of Balloon to Enter Cavernous Sinus by the Arterial
Approach
The transvenous approach can be used if drainage is through the
inferior petrosal sinus. The use of a supermagnet to direct the
metallic marker inside the balloon should decrease the number of
failures to enter the cavernous sinus. If both the arterial and venous
routes are unsuccessful, it may be desirable to occlude the carotid
artery at the site of the fistula. If the patient cannot tolerate perma-
nent occlusion of the internal carotid artery, direct exposure of the
cavernous sinus at surgery and introduction of the detachable
balloon in the cavernous sinus is possible. The other alternative is to
perform a surgical external carotid–middle cerebral artery bypass
before permanent occlusion of the carotid artery.

If carotid artery occlusion is chosen, it is mandatory to perform
contralateral carotid and/or vertebral angiography before detach-
ing the balloon in order to confirm that the fistula does not fill
from above. It is sometimes difficult to position the tip of the balloon
beyond the fistula, because the balloon may “stick” at this level in
the carotid siphon. It could be catastrophic to partly occlude the
fistula with the balloon; the carotid artery would be permanently
occluded below the fistula and the patient could develop ischemic
complications from steal through the fistula.

Surgical Exposure of Cavernous Sinus and Direct Balloon
Implantation
If the fistula recurs after intracranial ligation of the internal carotid
artery and division of the internal carotid in the neck, and if the
internal carotid artery cannot be pierced above the level of the
previous ligation, direct surgical exposure of the cavernous sinus is
indicated. The internal carotid blood flow is usually reconstituted
through different pathways, including the branches of the external
carotid artery; the dural branches of the contralateral internal ca-
rotid artery; the ophthalmic artery (if the internal carotid artery has
been ligated above it); rarely, the posterior communicating artery
(if the internal carotid artery has been ligated above it); or, excepti-
onally, a persistent trigeminal or hypoglossal artery. When the
cavernous sinus is directly exposed, an 8 French sheath is intro-
duced into the cavernous sinus, allowing passage of a balloon
catheter. The balloon is inflated with iodine under fluoroscopy and
detached when the murmur of the fistula has disappeared.

Conclusions
The multiplicity of decisions that the neuroradiologist confronts
during balloon treatment of a traumatic carotid-cavernous fistula is
related to the uniqueness of individual cases. Careful study of the
diagnostic angiograms in each case will aid the physician in avoiding
mistakes and in choosing the best approach. The goal of therapy is
to cure the patient (i.e., to occlude the fistula) without residual
oculomotor nerve palsy and with preservation of the carotid blood
flow. In my opinion, the occlusion of traumatic carotid-cavernous
sinus fistulas by injection of isobutyl-2-cyanoacrylate [5, 6] is ex-
tremely risky, since it is difficult to avoid glue emboli in the middle
cerebral artery. The carotid artery cannot be preserved in all cases.
Occasionally it is advisable to permanently occlude the artery in
preference to attempting to detach many balloons in a huge ca-
avernous sinus. Finally, in rare cases, anatomic injury to the carotid
artery precludes any effort to preserve it.

REFERENCES
1. Debrun GM, Lacour P, Vinuela F, Fox A, Drake CG, Caron JP.
 Treatment of 54 traumatic carotid-cavernous fistulas. J Neuro-
2. Manelfe C, Berenstein A. Treatment of carotid cavernous fis-
3. Mullan S. Experiences with surgical thrombosis in intracra-
nal berry aneurysms and carotid cavernous fistulas. J Neurosurg
1974;41:657–670
4. Serbinenko FA. Six hundred endovascular neurosurgical pro-
Neurochir [Suppl] (Wien) 1979;310–311
fistula: endarterial cyanoacrylate occlusion with preservation
6. Kerber C. Use of balloon catheters in the treatment of cranial