The use of 123I-iodoamphetamine and single-photon emission computed tomography to assess local cerebral blood flow.

D H O'Leary, T C Hill, R G Lee, M E Clouse and B L Holman

AJNR Am J Neuroradiol 1983, 4 (3) 547-549

http://www.ajnr.org/content/4/3/547
The Use of 123I-Iodoamphetamine and Single-Photon Emission Computed Tomography to Assess Local Cerebral Blood Flow

N-Isopropyl 123I-Iodoamphetamine (IMP) is a radiopharmaceutical that is lipid-soluble, penetrates the normal blood-brain barrier, and has a high first-pass extraction efficiency in brain. Initial IMP distribution is proportional to local cerebral blood flow and is stable for at least 1 hr after administration. When combined with single-photon emission computed tomography (SPECT), regional activity can be quantified. Eighty-three studies were performed to aid in understanding the clinical utility of this radiotracer. In control subjects, brain activity followed expected regional perfusion patterns. Physiologic maneuvers produced altered perfusion patterns corresponding to those demonstrated by positron tomography. Perfusion abnormalities in stroke patients were visualized earlier than structural changes detected by transmission computed tomography (CT), and the area of altered IMP activity generally exceeded that suggested by standard CT examination. Seizure foci were identified by local abnormalities of cerebral blood flow. Primary brain tumors failed to demonstrate IMP activity even when shown by angiography to be highly vascular.

The ability to routinely measure local blood flow (LCBF) and cerebral metabolism should have an impact on the diagnosis and treatment of neurologic disorders. Quantitative physiologic measurements of cerebral blood flow, glucose metabolism, and oxygen utilization have already been achieved with techniques that employ positron isotopes [1–3]. While the employment of positron emission tomography has contributed markedly to our understanding of regional cerebral function, the high cost and difficulties associated with the production of the cyclotron-based isotopes have severely limited their clinical application and stimulated the search for other methods that would yield comparable information [4, 5].

In order to measure regional cerebral physiology using a single-photon isotope such as technetium-99m or iodine-123, the isotope would have to be attached to a carrier that can easily cross the normal as well as the abnormal blood-brain barrier, would have to have a high first-pass extraction fraction, and would have to remain trapped in the brain until imaging is completed. The ability of radiotracers to penetrate the normal blood-brain barrier appears to be directly related to their lipid solubility [6]. In 1980 Winchell et al. [7] first proposed that N-isopropyl 123I-Iodoamphetamine (IMP) could be used to evaluate regional cerebral perfusion in humans. Studies demonstrated that this lipid-soluble radiopharmaceutical had a high first-pass extraction fraction in rat brain [6]. It was thought that IMP attached to high-capacity nonspecific central nervous system amine-binding sites. Kuhl et al. [8], employing arterial input measurements and tissue-sampling counting, demonstrated good correlation between LCBF based on IMP and that based on microsphere injections in dog brains. In an attempt to understand the potential clinical utility of this radiotracer, we performed 83 clinical studies. Our published results suggest that regional activity of IMP can be quantified in normal and diseased brains using single-photon emission computed tomography (SPECT) to obtain information similar to that available with positron imaging [9].

Materials and Methods

The instrument used in this study was the Harvard Scanning Multidetector Brain System, a single-photon machine that uses 12 sodium iodide detector units, all scanning in a rectilinear fashion within the same tomographic plane to obtain a single brain slice. Each detector consists of a focus collimator with the detectors moving in pairs, with the local point of each detector set to scan half the field of view. The data generated from these detectors are processed by a Data General Eclipse computer and reconstructed by a back projection method to obtain a single image made up of a matrix of 128 x 128 picture elements. Scanning time is 5 min for each slice, and slices at the same level may be summated to improve image quality. The sensitivity of the unit is 14,000 counts/mCi/cm² and the spatial resolution is 10 mm full width at half maximum for 99mTc [10]. This multidetector scanning system was originally designed by Stoddard and manufactured by Union Carbide as Cleon 710 prior to undergoing further modification at the Harvard Medical School [11].

The 123I radiolabel was produced by the TE-124 (P, 2N) 23MeV 123I reaction. This results in contamination with 124I of 2.1%–4.6% of the injected dose. Employing a technique described by Winchell et al. [7], the radiolabel was attached to IMP in California (Mediphysics Laboratory). Patients received about 5 mCi (185 MBq) of IMP intravascularly. Scanning was carried out during a period of 1–120 min after injection. In general, each patient was scanned at a point 2 cm above the canthomeatal line; however, this protocol was varied depending on the clinical area of interest.

In order to determine regional cerebral blood flow, specific re-
gions of interest were identified and counts/min/mCi injected
dose/100 g of brain (100 cm²) were calculated and adjusted for
such variables as number of slices obtained, dosage of ¹²³I, and
differences in the size of the region of interest. The mean slice
count rate/mCi/100 g of brain tissue in nine normal patients was
equated to normal cerebral blood flow of 54 ml/min/100 g [12].
Assuming linearity, this factor was used to calculate LCBF from
regional count rates obtained from the tomographic images in the
other patient studies.

A total of 72 patients was studied. Seven patients had two
examinations and two had three, for a total of 83 studies. Clinical
groupings included controls (21); stroke (19); transient ischemic
episode (TIA) (seven); preendarterectomy (three); seizure (eight);
brain tumor (five); hematoma (two); and other (seven). All patients
had transmission computed tomographic (CT) scans near the time
of their IMP studies.

Results

In our 21 normal control patients, activity was greatest in the strip
of cortex along the convexities of the frontal, temporal, and occipital
lobes corresponding anatomically to the cortical gray matter. Infold-
ings corresponding to some surface sulci were identified, as were
the interhemispheric and sylvian fissures. Activity was high in re-
gions corresponding to the gray matter of the basal ganglia and
thalamus, with lesser activity being present in the central white
matter. Obvious alterations in regional blood flow with physiologic
maneuvers were demonstrated after the intravenous injection of
IMP. Patients injected with eyes closed showed a dramatic decrease
in activity in their associated visual cortex when compared with
patients injected with eyes open (fig. 1).

Of 19 stroke patients, 16 had positive and three negative IMP
studies. In five of the positive studies, there was good correspond-
ence between the extent of brain injury depicted by IMP and CT
scans. Seven patients had abnormal IMP scans demonstrating
areas of decreased perfusion and normal CT scans (fig. 2). Four
patients had IMP studies that showed perfusion deficits larger than
the abnormality seen on CT scans. Both studies were normal in two
patients. One patient, studied 3 weeks after a presumed lacunar
stroke, had a positive CT scan and a normal IMP study.

No distinct abnormalities were visualized on the IMP studies of
those 10 patients studied after TIA or before carotid end-
arterectomy. One of the three preoperative patients was restudied
shortly after endarterectomy and diminished perfusion was detected
on the operative side. The patient was stable, and a third study
done 4 weeks later showed normal perfusion.

Of the five patients with brain tumor, three demonstrated dimin-
ished IMP activity in the area of the tumor. All five had abnormal CT
scans.

Only one of our seizure patients, studied at the time of actual
seizure, had a positive scan with focally increased activity in a
region corresponding to the area of electroencephalographic (EEG)
abnormality (fig. 3). The other seven patients were studied interci-
 tally. Five had normal scans, and two demonstrated diminished
focal activity in the region of the suspected brain abnormality. Two
patients, one with hemiballismus and one with tremor, had increased
activity in the appropriate motor regions.

Discussion

Our clinical studies indicate that SPECT of IMP may have wide-
spread clinical utility in the study of neurologic disease. The rela-
tively long half-life of ¹²³I (13 hr) removes one of the major con-
straints associated with the use of positron isotopes. This, combined
with the fact that the equipment required for imaging is less costly
than that associated with positron emission tomography, suggests
that these studies will be feasible in the general hospital.

Fig. 1.—Control patient. A, Single-photon tomographic image 2 cm above
canthomeatal line demonstrates high level of activity in cortical gray matter
as well as basal ganglia and thalamus. Central white matter and ventricles
show less activity, reflecting decreased flow. Resolution is high enough to
demonstrate interhemispheric fissure and sulci. B, At 2 cm above cantho-
meatal line in patient with eyes closed. Decreased activity in occipital lobe
corresponding to associative visual cortex (arrows).

Fig. 2.—Stroke patient. A, Initial CT scan on day of acute onset of right hemi-
paresis shows no abnormality. B, SPECT-IMP scan at same level. Large
area of decreased activity in left hemisphere in region of distribution of middle
cerebral artery corresponds to clinical findings. C, CT scan 1 week later. Area
of edema in left hemisphere in region of previously noted perfusion deficit on
SPECT-IMP.
In normal brain, there is good correlation between regional metabolism and regional cerebral blood flow. The distribution of IMP reflects the flow of blood within brain tissue during the first few minutes after injection. An individual injected with eyes closed will demonstrate a reduced pattern of activity in the associated visual cortex even if he or she is later scanned while viewing a complex visual scene. This initial activity seems to be maintained for at least 1 hr.

The exact behavior of the radiotracer is incompletely understood. Perfusion abnormalities in stroke patients were visualized earlier than structural changes detected by transmission CT, and the area of altered IMP activity generally exceeded that suggested by standard CT examination. Ackerman et al. [13, 14] have demonstrated with positron tomography that oxygen metabolism and cerebral blood flow may be uncoupled after a stroke, and that the values of LCBF may not be as important as O₂ metabolism as an indicator of tissue viability. We did not visualize either the luxury perfusion syndrome of Lassen [15] or delayed reactive hyperemia in any of our stroke cases, phenomena thought to represent nonnutritional blood flow. This may suggest that in damaged brain we are measuring the availability of binding sites in addition to cerebral blood flow, and thus possibly distinguishing between viable and nonviable tissue. Further studies will be needed to determine whether we are able to distinguish between varying degrees of tissue injury.

While tomography provides three-dimensional resolution and permits quantification of LCBF, this is not an absolute requirement for IMP studies. In all our abnormal stroke studies, the area of brain injury was clearly visualized on standard images with a scintillation camera, so this information would be readily available to assist in therapeutic decisions in the acute stroke patient [16].

IMP would also appear to play a role in the study of epilepsy, particularly in those patients being considered for surgery, where seizure activity is poorly controlled by medication. Because IMP studies are simple to perform and do not require much patient cooperation or complex external breathing or injection devices, it is relatively easy to study patients in an attempt to localize seizure foci. We have shown that IMP can identify a seizure focus by demonstrating increased regional blood flow in a specific portion of the brain by injecting material during a seizure or at a time when the patient's EEG is abnormal.

Thus we have demonstrated that SPECT of IMP permits early delineation of tissue injury in stroke patients, may identify the location and extent of seizure foci, provides quantitative data to permit assessment of LCBF, and has the potential for widespread use in the study of neurologic disease.

REFERENCES