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CT and Multimodal MR Imaging Features of Embryonal Tumors
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ABSTRACT

BACKGROUND AND PURPOSE: Embryonal tumors with multilayered rosettes, C19MC-altered, are brain tumors occurring in young
children, which were clearly defined in the 2016 World Health Organization classification of central nervous system neoplasms. Our
objective was to describe the multimodal imaging characteristics of this new entity.

MATERIALS AND METHODS: We performed a retrospective monocentric review of embryonal brain tumors and looked for embryonal
tumors with multilayered rosettes with confirmed C19MC alteration. We gathered morphologic imaging data, as well as DWI and PWI data
(using arterial spin-labeling and DSC).

RESULTS: We included 16 patients with a median age of 2 years 8 months. Tumors were both supratentorial (56%, 9/16) and infratentorial
(44%, 7/16). Tumors were large (median diameter, 59 mm; interquartile range, 48 –71 mm), with absent (75%, 12/16) or minimal (25%, 4/16)
peritumoral edema. Enhancement was absent (20%, 3/15) or weak (73%, 11/15), whereas intratumoral macrovessels were frequently seen
(94%, 15/16) and calcifications were present in 67% (10/15). Diffusion was always restricted, with a minimal ADC of 520 mm2/s (interquartile
range, 495–540 mm2/s). Cerebral blood flow using arterial spin-labeling was low, with a maximal CBF of 43 mL/min/100 g (interquartile
range, 33–55 mL/min/100 g 5). When available (3 patients), relative cerebral blood volume using DSC was high (range, 3.5–5.8).

CONCLUSIONS: Embryonal tumors with multilayered rosettes, C19MC-altered, have characteristic imaging features that could help in the
diagnosis of this rare tumor in young children.

ABBREVIATIONS: ASL � arterial spin-labeling; ETANTR � embryonal tumors with abundant neuropil and true rosettes; ETMR � embryonal tumors with multilay-
ered rosettes; IQR � interquartile range

The classification of embryonal brain tumors has been rede-

fined in the 2016 World Health Organization classification of

central nervous system neoplasms,1 with the disappearance of the

term “primitive neuroectodermal tumors.” Among the newly de-

scribed entities, embryonal tumors with multilayered rosettes,

C19MC-altered, were defined by amplification or gain of the

C19MC region on chromosome 19 (19q13.42).2-4 These tumors

include the previously known embryonal tumors with abundant

neuropil and true rosettes (ETANTR, also referred to as embryo-

nal tumors with multilayered rosettes [ETMR]), ependymoblas-

toma, and, in some cases, medulloepithelioma.2,4 They can be

histopathologically suspected by LIN28A-positive immunostain-

ing, but full confirmation warrants molecular confirmation of the

C19MC alteration.

Because this type of tumor is rare and was only recently clearly

isolated, reports of confirmed C19MC-altered tumors are scarce

and most studies did not report detailed imaging data,2-14 except

for the recent cohort of 7 patients reported by Wang et al.15

Nowak et al16-18 reported imaging data from 22 patients with

ependymoblastoma and LIN28A immunostaining, but molecular

confirmation was absent because these articles were published

before the 2016 World Health Organization classification. These

reports described ETMRs as large tumors with absent-to-moder-

ate enhancement after contrast media injection and, when DWI
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images were available, a hypersignal on DWI. Nevertheless, be-

cause these tumors were rare and gathered during a long time,

PWI data and detailed DWI data (such as ADC) were missing.

Our aim was to assess multimodal imaging characteristics of

ETMR, C19MC-altered, through a retrospective review of molec-

ularly confirmed cases, including DWI and PWI data.

MATERIALS AND METHODS
Patients
We performed a retrospective review from 2005 to 2018 of the

prospective data base of pediatric brain tumors from the Necker

Enfants Malades Hospital, Paris, France, as well as a review of the

pathology data base. We gathered all tumors previously consid-

ered as ependymoblastoma, medulloepithelioma, embryonal tu-

mors with abundant neuropils and true rosettes, and ETMR. They

were histopathologically confirmed by an experienced neuropa-

thologist (A.T.-E.) and molecularly confirmed by the presence of

a gain or an amplification of C19MC by the CC19MC/TPM4

FISH Probe kit, ref CT-PAC033 (CytoTest; https://www.cytotest-

.com/enn/index.asp). When MR images were available, patients

were included in the study.

Ethics committee approval was obtained to study multimodal

imaging of children’s brain tumors. Agreement of patients was

prospectively obtained to perform molecular testing of tumor

samples and to use medical images for research purposes.

Imaging
MR imaging was performed at our institution using a Signa HDxt

1.5 T system (GE Healthcare, Milwaukee, Wisconsin) and a 12-

channel head-neck-spine coil. Acquired sequences were the fol-

lowing: 3D-T1-weighted, 3D-T2-weighted, FLAIR, DTI, pseudo-

continuous 3D-arterial spin-labeling (ASL), DSC if available, and

3D-T1-weighted imaging after contrast media injection. If available,

postgadolinium T1-weighted spine imaging was also reviewed. As-

sessment of calcifications was performed using precontrast CT when

available and T2*-weighted sequences (gradient-echo T2 or B0 of the

DWI sequence) otherwise.

Acquisition parameters for the ASL sequence were as follows:

TR/TE, 4428/10.5 ms; postlabeling delay, 1025 ms; 80 axial parti-

tions; FOV, 240 � 240 mm; slice thickness, 4 mm; acquisition

matrix, 8 spiral arms in each 3D partition with 512 points per arm;

flip angle, 155°; acquisition time, 4 minutes 17 seconds. Acquisi-

tion parameters for the DTI sequence were the following: 24 di-

rections, b-value � 1000 s/mm2, TR � 8000 ms, TE � minimum

according to the specific absorption rate, slice thickness � 3 mm,

FOV � 240 � 240 mm, matrix size � 512 � 512.

Two senior neuroradiologists (V.D.-R. and R.L.) analyzed

MRIs in consensus. Images were qualitatively analyzed using a

PACS.

DTI data were analyzed using an Advantage Workstation

(Version 4.7; GE Healthcare) to obtain isotropic diffusion maps

and average diffusion coefficient maps. ADC, CBF, relative CBF

using ASL, and relative CBV using DSC were measured within the

whole tumor and within the most diffusion-restricted area or the

most perfused area (ROI size, 50 mm2). To obtain relative perfu-

sion values, we used an ROI within the temporal cortex for ASL

and a ROI in normal-appearing white matter for DSC.

Statistical Analysis
Data description was performed using proportions for categoric

data and median and interquartile range (IQR) for quantitative

data (ADC, CBF, and relative CBF using ASL, relative CBV and

relative CBF using DSC).

RESULTS
Patients
Among 2568 patients in the data base, 22 patients with suspected

ETMR were histopathologically reviewed. Sixteen patients (12

girls, 4 boys) with ETMR, C19MC-altered, were included, with a

median age of 2 years 8 months (range, 1 year 2 months to 11 years

10 months).

Imaging
Findings are reported in On-line Table 1 and On-line Table 2.

Both MR imaging and CT scans were available for 9/16 pa-

tients; 6/16 had only MR images, whereas 1/16 had only CT im-

ages (patient 14, who died within 1 day of her admission in the

hospital). DWI with ADC was available for 13/16 patients; ASL,

for 8/16 patients; and DSC, for 3/16 patients. Spinal imaging was

available for 7/16 patients.

Tumors were always intra-axial, supratentorial in 9 cases

(within hemispheres with variable involvement of the basal gan-

FIG 1. Brain imaging of patient 6. Axial plane MR images show a large
heterogeneous right temporal tumor, with mass effect and midline
shift. The tumor displays hypointensity on the T1-weighted image (A),
hyperintensity on the T2-weighted image (C), and weak enhancement
after contrast media injection (B). An intratumoral vessel is seen (B).
Diffusion signal is high (D) with low ADC. Diffusion is also restricted in
the right occipital lobe (D) because of an ischemic injury caused by
compression of the posterior cerebral artery.
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glia) (Figs 1 and 2) and infratentorial in 7 cases (2 lateralized

within the tentorial incisure, equally supra- and infratentorial,

posterior and lateral to the cerebral peduncle, with mass effect on

the cerebral peduncle [On-line Fig 1]; 2 in the cerebellar vermis

[Fig 3]; 1 in the fourth ventricle; and 2 within the brain stem [Fig

4 and On-line Fig 2]). Their median largest diameter was 59 mm

(IQ , 48 –71 mm), causing mass effect and frequent brain hernia-

tion. Peritumoral edema was rare (4/16) and not very extended

when present.

No intracranial dissemination was

seen at diagnosis, nor spinal metastasis

when spine MR imaging was available.

Calcifications were present in 67%

(10/15, Fig 2), and tumor density on CT

was variable, though more frequently

hyperdense (5/10). Tumors were always

hypointense on T1-weighted images

and hyperintense on T2-weighted and

FLAIR images. Enhancement was weak

and heterogeneous, sometimes nodular,

except for the older patient (patient 16,

11 years of age) in whom the tumor had

high and homogeneous enhancement.

All patients except 1 (patient 15, On-line

Fig 2) had curvilinear homogeneous en-

hancement connected to cortical veins,

consistent with large intratumoral mac-

roscopic veins (diameter, 1–2.5 mm).

Diffusion was always restricted, with

a median minimal ADC measured at 520

mm2/s (IQR 495–540 mm2/s) and a me-

dian ADC within the whole tumor of

728 mm2/s (IQR, 611– 802 mm2/s).

CBF using ASL was low, with a me-

dian value within the most perfused area of 43 mL/min/100 g

(IQR, 33–55 mL/min/100 g) and a median value within the whole

tumor of 30 mL/min/100 g (IQR, 24 – 40 mL/min/100 g). DSC-

PWI was performed for only 3 patients (between 2 and 3 years of

age) and showed high maximal and mean relative CBV (range,

3.5–5.8, and 1.7–2.7, respectively; On-line Table 2). DSC-derived

relative CBF was also high (maximal range and mean range, 2.6 –

4.4 and 1.1–1.9, respectively).

DISCUSSION
In this cohort, we report the characteristic imaging features of

confirmed ETMR, C19MC-altered: large tumors with frequent

calcifications, little-to-no edema, absent or weak contrast en-

hancement, intratumoral veins, restricted diffusion, and low CBF

values using ASL.

Fifty-six percent of the tumors were hemispheric with variable

basal ganglia involvement. This is slightly lower than previous

larger clinical or pathologic cohorts, which reported 70%–76%

supratentorial tumors.2-4,13,16 The distribution of posterior fossa

tumors between the fourth ventricle/cerebellum and brain stem

was also reported.3,15,16 Most interesting, we found 2 tumors lat-

eralized within the tentorial incisure, equally supra- and infraten-

torial, posterior and lateral to the cerebral peduncle, with mass

effect on the cerebral peduncle, which has rarely been report-

ed.19-21 Nevertheless, because previous articles reported few im-

aging details, these tumors may have been classified as posterior

fossa tumors or superior cerebellum vermis tumors. Their ana-

tomic localization was difficult to define because of their large

size.

Weak contrast enhancement is quite an original feature for this

high-grade neoplasm and supports contrast enhancement not being

a criterion for high-grade tumors in children.22 This absent or min-

FIG 2. Brain imaging of patient 11. Axial plane image on CT (A) shows a right thalamic mass with
microcalcifications. The tumor displays hypointensity on the T1-weighted image (B), hyperinten-
sity on the T2-weighted image (D), and weak nodular enhancement after contrast media injection
(C). An intratumoral vessel is seen (C). Diffusion signal is high (E) with low ADC. Cerebral blood flow
(F) is low (maximum, 46 mL/min/100 g) within the tumor.

FIG 3. Brain imaging of patient 3. Sagittal plane (A–C) MR images show
a large midline vermian tumor, with mass effect on the fourth ventri-
cle causing hydrocephalus. The tumor displays hypointensity on the
T1-weighted image (A), hyperintensity on the T2-weighted image (C),
and no enhancement after contrast media injection (B). Diffusion sig-
nal is high (D) with low ADC.
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imal enhancement was also reported in several cases of confirmed

ETMR6,9,12,14,15 and in the LIN28A-stained ependymoblastoma co-

hort published by Nowak et al.16 The only outlier (patient 16) who

had high contrast enhancement was clearly atypical because this pa-

tient was by far the oldest (11 years of age) and had high CBF. On the

other hand, intratumoral large vessels were seen in all patients except

1 (patient 15, who had a mostly cystic tumor with peripherical tissu-

lar content). This feature was not detailed in previous reports, except

in a few cases reports of histopathologically diagnosed ETANTR.23-26

Diffusion was restricted in all tumors, with a median ADC of

728 mm2/s for the whole tumor and 520 mm2/s for the area of

maximum diffusion restriction. Hypersignal on DWI in con-

firmed ETMR was also previously reported,12,15 as well as in the

ependymoblastoma cohort of Nowak et al,16 but no ADC values

have been reported yet. This result is in line with the classic diffu-

sion restriction in embryonal tumors in children, formerly known

as primitive neuroectodermal tumors.27

CBF using ASL was low (ie, �50 mL/min/100 g) for most

patients, with a median maximal CBF of 43 mL/min/100 g. To our

knowledge, no previous PWI data were reported. This feature

may be surprising for these high-grade neoplasms because high-

grade pediatric tumors usually have high CBF using ASL.22,28-31

However, this is consistent with the study of Dangouloff-Ros et

al22 on the posterior fossa, which reported that tumors with a

moderate CBF (25–50 mL/min/100 g) but a weak contrast en-

hancement were high-grade neoplasms, including embryonal tu-

mors. This CBF/enhancement ratio was not reported in hemi-

spheric tumors, but supratentorial embryonal tumors (former

primitive neuroectodermal tumors) were absent in this cohort.

Relative CBV using DSC was available for only 3 patients; it

has become less frequently used in our institution after the intro-

duction of the ASL sequence because it requires contrast media

injection with high flow, which is difficult to obtain in young

children. Relative CBV was high in all 3 cases (range, 3.5–5.8),

even if CBF using ASL was as low as in other patients. This finding

underlines the different pathophysiologic mechanisms involved

in ASL and DSC PWI.32 The presence of calcifications in 2 of these

patients (CT not available for the third

patient) may have caused artifacts while

using DSC and consequently less consis-

tent results.

These homogeneous imaging charac-

teristics may help to distinguish ETMR

from other brain tumors in children be-

tween 1 and 4 years of age. Pilocytic as-

trocytoma is quite easily differentiated

because it has no diffusion restriction

and strong contrast enhancement.33

Ependymoma differs by its morphol-

ogy, T2-weighted high signal, and vari-

able DWI pattern.18,33 Most of all, some

characteristics may be useful to distin-

guish ETMR from other embryonal

brain tumors (ie, medulloblastoma and

atypical teratoid/rhabdoid tumor,

which may look like ETMR because they

are aggressive tumors with high cellularity

causing diffusion restriction).33,34 ETMR localization was different

from that of classic medulloblastomas because it was not localized in

the fourth ventricle (except in the one 11-year-old outlier patient).

When localized in the cerebellar hemispheres (Sonic HedgeHog sub-

group), medulloblastomas are different again because this subgroup

has high contrast enhancement.34 Contrast uptake of ETMR was

low, contrary to reported data concerning atypical teratoid/rhabdoid

tumors.35 Furthermore, atypical teratoid/rhabdoid tumors usually

have a much more necrotic pattern, with central cysts,35 than that in

our ETMR cohort. Finally, medulloblastomas and atypical teratoid/

rhabdoid tumors usually have high cerebral blood flow using ASL.22

Our study has several limitations. DSC was performed in only

3/16 patients, and one should use caution generalizing our rela-

tive CBV values. Also, we did not have spectroscopy data within

the tumor because spectroscopy was not routinely performed in

our institution.

CONCLUSIONS
We report the imaging data of 16 patients with confirmed ETMR,

C19MC-altered. Imaging features were characteristic and should

help to diagnose these rare tumors in young children between 1

and 4 years of age.
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