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ORIGINAL RESEARCH
PEDIATRICS

Thalamic Massa Intermedia in Children with and without
Midline Brain Malformations

M.T. Whitehead and N. Najim

ABSTRACT

BACKGROUND AND PURPOSE: The massa intermedia is a normal midline transventricular thalamic connection. Massa intermedia
aberrations are common in schizophrenia, Chiari II malformation, X-linked hydrocephalus, Cornelia de Lange syndrome, and dience-
phalic-mesencephalic junction dysplasia, among others. We have noticed that massa intermedia abnormalities often accompany
other midline malformations. The massa intermedia has never been formally evaluated in a group of exclusively pediatric patients,
to our knowledge. We sought to compare and contrast the prevalence, size, and location of the massa intermedia in pediatric
patients with and without congenital midline brain abnormalities.

MATERIALS ANDMETHODS: Successive 3T brain MR imaging examinations from pediatric patients with and without midline malfor-
mations were procured from the imaging data base at a pediatric hospital. Massa intermedia presence, size, morphology, and posi-
tion were determined using 3D-TIWI with 1-mm isotropic resolution. The brain commissures, septum pellucidum, hypothalamus,
hippocampus, vermis, and brain stem were evaluated to determine whether alterations were related to or predictive of massa
intermedia abnormalities.

RESULTS: The massa intermedia was more frequently absent, dysmorphic, and/or displaced in patients with additional midline
abnormalities than in those without. The massa intermedia was absent in 40% of patients with midline malformations versus 12% of
patients with normal findings (P, .001). Massa intermedia absence, surface area, and morphology were predictable by various attrib-
utes and alterations of the commissures, hippocampus, hypothalamus, vermis, brain stem, and third ventricle.

CONCLUSIONS: Most pediatric patients have a thalamic massa intermedia centered in the anterior/superior third ventricle. Massa
intermedia abnormalities are commonly associated with other midline malformations. Normal-variant massa intermedia absence is a
diagnosis of exclusion.

ABBREVIATION: MI ¼ massa intermedia

The massa intermedia (MI) is a normal midline transventricu-
lar thalamic link that develops around 13–17weeks’ gesta-

tional age.1-3 It is not considered a commissure because no
reciprocal interhemispheric connections have been found within
it in humans. Nonetheless, its cytoarchitecture suggests that it is
functionally active.4 The MI comprises neurons and neuropil
with circularly oriented fibers postulated to represent neuro-
sphere correlates (neuronal and glial progenitors).4,5 Stria

medullaris fibers that modulate motivation and mood may cross

through the MI as suggested by DTI tractography.6 In a separate

DTI study, Damle et al5 showed that MI size correlates with ante-

rior thalamic radiation integrity and mediates the relationship

between age and attention in healthy female subjects.
Animal studies have also enhanced our understanding of

MI anatomy and potential functions. Widespread frontal, periro-

landic/pericruciate, and limbic axonal MI crossings have been

documented histologically in monkeys, rats, and cats.7 Crossing

nigro-caudate and caudo-caudate connections have also been

identified.8 A rhesus monkey study demonstrated loss of the nor-

mal crossed tactile placing response in stroke-induced monkeys

following concurrent transection of the corpus callosum and MI

but not in stroke-induced monkeys after callosotomy alone, sug-

gesting that the paralytic effect of cortical damage may be damp-

ened with an intact MI and accentuated without it.9
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Multiple studies have shown that the MI may be small or
absent more frequently in patients with schizophrenia spectrum
disorders.2,10-15 It may also be small in borderline personality and
bipolar disorders.16,17 MI abnormalities can also occur in associa-
tion with Chiari II malformation, X-linked hydrocephalus,
Cornelia de Lange syndrome, and diencephalic-mesencephalic
junction dysplasia, among others.18-22

The thalamic massa intermedia has never been formally eval-
uated in a group of exclusively pediatric patients, to our knowl-
edge. We have observed that the MI is commonly absent, small,
thickened, and/or displaced in patients with additional midline
abnormalities. We sought to compare and contrast the preva-
lence, size, and location of the MI in 3T MR imaging examina-
tions with normal findings in pediatric patients with and without
congenital midline brain abnormalities and to determine whether
there are structural variables that can predict MI abnormalities.

MATERIALS AND METHODS
After Children’s National Hospital institutional review board ap-
proval, the MR imaging data base at a single academic pediatric
hospital was searched for all consecutive 3T brain MR imaging
examinations performed during 8 years (2012–2019) from pediat-
ric patients (0–18 years of age) using the following key words/
phrases: “normal brain,” “midline abnormality,” “agenesis,” “dys-
genesis,” and “hypogenesis.” These terms were selected because
they are a common lexicon used in neuroradiology reports from
our institution to describe various midline malformations of the tel-
encephalon, diencephalon, hindbrain, face, and skull. Each study
was reviewed to verify the lack of abnormalities in the healthy group
and the presence of $1 congenital midline abnormality in the
abnormal group. Examinations with excessive motion artifacts, lack
of 3D-T1WI, prior surgical intervention, tumor, and clastic lesions
other thanmild gliosis were excluded. In the healthy group, develop-
mental delay and seizures were additional exclusion criteria. Age,
sex, and examination indications were documented. Medical records
were reviewed to clarify history and document diagnoses.

All MR imaging studies were performed on a 3T scanner
(Signa HDxt Optima; GE Healthcare, Milwaukee, Wisconsin).
Pulse sequences included a 3D sagittal echo-spoiled gradient-
echo T1WI with 3 plane reformats, T2WI, T2-FLAIR, susceptibil-
ity-weighted (T2* weighted angiography), and DTI with 7 di-
rections of encoding. 3D echo-spoiled gradient-echo T1WI
parameters were the following: TE/TR= 3/8 ms, TI= 450 ms, flip
angle = 12°, section thickness = 1 mm, section spacing = 0.5mm,
matrix = 256 � 256, FOV= 40–58 � 16–24 cm (based on head
size). All examinations were evaluated, in consensus, by a board-
certified neuroradiologist and pediatric neuroradiologist with
6 years of practice experience following certification (M.T.W.)
and a second reader that had completed an Accreditation
Council for Graduate Medical Education Pediatric Radiology
Fellowship.

3D-T1WI was used to evaluate the MI presence, morphology
(normal/thin/thick), location (third ventricle quadrant center),23

anterior-posterior diameter, craniocaudal diameter, and surface
area. The corpus callosum (presence, morphology, length, surface
area, and diameters of the genu, rostrum, and splenium) and an-
terior commissure (presence, morphology, surface area, and

anterior-posterior and craniocaudal diameters) were assessed
using sagittal 3D-T1WI. The transverse diameters of the MI, an-
terior commissure, and third ventricle were measured on refor-
matted axial 3D-T1WI. Additional brain structures were assessed
qualitatively in the following manner: septum pellucidum (nor-
mal/cavum/hypoplastic/absent), fornix (normal/hypoplastic/
absent), hypothalamus (normal/interhypothalamic adhesion),
hippocampus (normal/under-rotated/dysplastic/sclerosis), vermis
(normal/hypoplastic/dysplastic 6 hypoplastic), and brain stem
(normal/hypoplastic/dysplastic6 hypoplastic).

Using descriptive data derived from the healthy group, 2 SDs
from the mean upper and lower bound cut points were deter-
mined for the MI, corpus callosum, and anterior commissure
continuous data. Measurements falling below and above these
boundaries were classified as “thin/hypoplastic” and “thickened/
dysplastic,” respectively.

Statistical Methods
Normal Gaussian distribution of the data means was confirmed
by a Shapiro-Wilk test. Subsequently, 2-tailed unpaired t tests
were used to compare the continuous data means within and
between the healthy and midline abnormality groups. x 2 tests
were used to evaluate categoric variable distribution differences
within and between groups. Multiple logistic and linear regres-
sion analyses were conducted to determine whether there were
age, sex, or MR imaging predictors of MI absence, size, or mor-
phology. Additionally, logistic regression analyses were used to
determine whether age predicted MI absence after controlling for
sex. P, .05 was considered significant.

RESULTS
The healthy group comprised 111 examinations from 105 unique
patients after excluding 4 cases (3D-T1WI lacking, n=3; motion,
n=1). Six examinations from 5 patients were follow-ups. The
most common primary indications were headache (n=83) and
encephalopathy (n=11). The midline abnormality group con-
sisted of 119 examinations from 103 patients after excluding 6
(catheters, n=3; normal, n= 2; glioma, n=1). Sixteen examina-
tions from 14 patients were follow-ups. The most common pri-
mary indications in the abnormal group were fetal imaging
with abnormal findings (n = 32), seizures (n = 16), dysmor-
phia (n = 15), and developmental delay (n = 10); a unifying di-
agnosis was achieved in 36/103 (35%), 19 (53%) of which
were genetic diagnoses and 17 (47%) of which were clinical/
imaging diagnoses, most commonly septo-optic dysplasia
(n = 6) and Dandy-Walker malformation (n = 4). The average
age of the healthy group was 11.7 6 5.3 years (range, 9 days to
18 years) versus 4.1 6 5.5 years (range, 1 day to 18 years) in
the midline abnormality group (P, .001). There was no sig-
nificant sex difference between groups (P = .78) (Table).

MI absence was more common in patients with midline
abnormalities (41/103; 40%) than in patients with normal find-
ings (13/105; 12%) (P, .001) (Figs 1–4). It was absent in 4/4
(100%) Dandy-Walker Malformation cases and 1/6 (17%) septo-
optic dysplasia cases. The MI was duplicated in 1 case from the
midline abnormality group. The MI transverse diameter was the
only MI measurement with a statistical difference between
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groups. The MI mean surface area was not significantly different
between groups (healthy group, 43 6 24mm; range, 6–140mm;
abnormal group, 44 6 49mm; range, 2–214mm; P= .46).
However, the MI morphology differed and was almost always
normal in examinations with normal findings (89/92, 97%) and
frequently-but-less commonly normal in patients with midline
abnormalities (45/62, 73%) (P, .001) (Figs 5 and 6). Further-
more, the MI location differed between groups; in examinations
with normal findings, it was almost always centered in the ante-
rior/superior quadrant of the third ventricle (n=84, 91%) and
was more variable in patients with midline abnormalities
(P, .001). Neither MI presence nor surface area nor morphology
was predictable on the basis of age or sex (P. .05). There was no
significant change in the presence, size, morphology, or location
of the MI on any of the 6 follow-up examinations in the healthy
group; however, 6/11 (55%) follow-up examinations from
patients with an MI in the abnormal group had interval MI vol-
ume loss. When the MI surface area remained stable on follow-
up, there was no significant change in third ventricle diameter in
either group (P. .67). However, the third ventricle diameter sig-
nificantly increased when the MI surface area decreased
(P= .013). Specific data of additional groups are presented in the
Table.

Logistic regression analysis showed that the odds of an absent
MI were 1.5 times greater (OR, 0.68; 95% CI, 0.59–0.79; P, .001)

with every 1-mm increase in the third ventricle transverse diame-
ter and 1.7 times greater (OR, 0.6; 95% CI, 0.48–0.75; P, .001)
with every 1-mm increase in the anterior commissure transverse
diameter in both groups combined. Furthermore, third ventricle
diameter and anterior commissure diameter were strong predic-
tors of MI surface area and morphology in both groups combined
(P, .001). Corpus callosum presence was predictive of MI pres-
ence (OR, 3.9; 95% CI, 1.8–8.5; P, .001) and MI area (P= .002)
in both groups combined. Interhypothalamic adhesions were pre-
dictive of MI surface area and morphology in both groups com-
bined (P, .03). Hippocampal abnormalities tripled the odds of
MI absence (OR, 0.33; 95% CI, 0.17–0.65; P, .001) and were
predictive of MI surface area and morphology abnormalities
(P, .02) in both groups combined. Brain stem hypoplasia or
dysplasia or both were predictive of MI surface area and mor-
phology in both groups combined (P, .001). The odds of MI ab-
sence were 2.4 times greater in patients with vermian hypoplasia
and/or dysplasia (OR, 0.42; 95% CI, 0.24–0.73; P= .002) in both
groups combined (On-line Table).

DISCUSSION
The thalamic massa intermedia is more commonly absent (40%
versus 12%), dysmorphic, and/or displaced in children with other
structural midline brain abnormalities than in those without. MI

Demographic and structural variables in healthy and midline abnormality groups

Healthy Group (Avg 6 SD) Midline Group (Avg 6 SD) Total (Avg 6 SD) P
Age (yr) 11.7 6 5.3 4.1 6 5.5 7.9 6 6.6 .001
Sex n = 55 f (52%) n = 52 f (50%) n = 107 f (51%) .78
MI present n = 92 (88%) n = 62 (60%) n = 154 (74%) .001

Morphology n = 89 (n); 3(T) n = 45 (n); 10(T); 7(t) n = 134 (n); 13(T); 7(t) .001
tr (mm) 1.5 6 0.2 2 6 0.2 1.7 6 1 .002
ap (mm) 7.3 6 2.3 6.8 6 3.9 7 6 3.1 .144
cc (mm) 6.7 6 5.6 6.1 6 3.5 6.4 6 4.9 .202
Area (mm2) 42.9 6 23.9 44.2 6 48.9 43.2 6 35.9 .458
Location n = 84 (a/s); 6 (p/s); 2 (p/i) n = 34 (a/s); 14 (p/s); 3 (p/i);

1 (a/i); 10 (all)
n = 118 (a/s); 20 (p/s); 5 (p/i);

1 (a/i); 10 (all)
.001

CC present n = 105 (100%) n = 70 (68%) n = 175 (84%) .001
Morphology n = 105 (n) n = 13 (n); 6 (h); 46 (h/d); 5 (d) n = 118 (n); 6 (h); 46 (h/); (5d) .001
Length (mm) 68.2 6 7.6 39.9 6 21.5 57 6 20.2 .001
Genu (mm) 10.5 6 2 7.4 6 10 9.3 6 6.6 .007
Body (mm) 5.7 6 1.2 3.5 6 2.2 4.9 6 1.9 .001
Splen (mm) 10.3 6 2 4.7 6 2.9 8.4 6 3.6 .001
Area (mm2) 546 6 129 214 6 199 415 6 228 .001

AC present n = 105 (100%) n = 101 (98%) n = 206 (99%) .151
Morphology n = 105 (n) n = 41 (n); 53 (h); 7 (T) n = 146 (n); 53 (h); 7 (T) .001
tr (mm) 1.8 6 0.4 3.9 6 1.5 2.8 6 1.5 .001
ap (mm) 2.6 6 0.7 1.7 6 1.1 2.2 6 1 .001
cc (mm) 3.5 6 1 2.2 6 1.3 2.9 6 1.3 .001
Area (mm2) 8.1 6 3.8 4.4 6 5.1 6.3 6 4.9 .001

Septum pellucidum n = 96 (n); 9 (c) n = 13 (n); 7 (c); 47 (a); 36 (h) n = 109 (n); 16 (c); 47 (a); 36 (h) .001
Fornix n = 105 (n) n = 36 (n); 25 (a); 42 (h) n = 141 (n); 25 (a); 42 (h) .001
Hypothalamus n = 105 (n) n = 84 (n); 19 (IHA) n = 189 (n); 19 (IHA) .001
Hippocampus n = 87 (n); 18 (u) n = 11 (n); 88 (u); 2 (d); 2 (mts) n = 98 (n); 106 (u); 2 (d); 2 (mts) .001
Brain stem n = 105 (n) n = 67 (n); 18 (h); 18 (d) n = 172 (n); 18 (h); 18 (d) .001
Vermis n = 105 (n) n = 77 (n); 15 (h); 11 (d) n = 182 (n); 15 (h); 11 (d) .001
3rd Ventricle (mm) 2.8 6 0.9 5.5 6 3.3 4.1 6 2.8 .001

Note:—Avg indicates average; tr, transverse diameter; ap, anteroposterior diameter; cc, craniocaudal diameter; CC, corpus callosum; Splen, splenium; AC, anterior com-
missure; n, normal; T, thick; t, thin; a/s, anterior/superior quadrant of 3rd ventricle; a/i, anterior-inferior; p/s, posterior-superior; p/i, posterior-inferior; all, all quadrants;
h, hypoplastic; h/d, hypogenetic 6 dysgenetic; d, dysgenetic/dysplastic; c, cavum; a, absent; IHA, interhypothalamic adhesion; u, under-rotated; mts, hippocampal sclero-
sis; f, female.
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absence, surface area, and morphology are predictable by various
attributes and abnormalities involving the corpus callosum, ante-
rior commissure, hippocampus, hypothalamus, vermis, brain
stem, and third ventricle.

Midline brain malformations are often multiple and may
involve the MI. For example, the MI diameter is generally smaller

in fetuses with corpus callosum agenesis.24 In our experience, the
MI is an often-neglected midline brain component on MR imag-
ing, perhaps due to lack of familiarity/awareness, perceived lack
of importance, and/or satisfaction with the search when other

FIG 1. Sagittal midline T1WI from a brain MR imaging with normal
findings in a 17-year-old adolescent girl with retroauricular pain
depicting the normal thalamic MI centered in the anterior/superior
portion of the third ventricle (arrow).

FIG 2. Sagittal midline T1WI from a brain MR imaging with normal
findings in an 11-year-old girl with headache, showing a normal MI
with part of its superior and posterior margin volume averaged with
the medial thalami in a patient with a small third ventricle (large
arrow). This appearance has the potential to compromise MI evalua-
tion both qualitatively and quantitatively. However, a faint marginal
distinction is often seen when carefully analyzed (small arrow).

FIG 3. Sagittal midline T1WI demonstrating MI absence in association
with multiple additional midline abnormalities, including marked
enlargement of the fourth ventricle/posterior fossa and under-rota-
tion of a hypoplastic/dysplastic vermis (Dandy-Walker malformation),
hypoplasia of the anterior commissure (arrow), pontine hypoplasia,
and agenesis of the corpus callosum.

FIG 4. Sagittal midline T1WI showing MI absence in association with
multiple additional midline abnormalities in a patient with septo-
preoptic holoprosencephaly. Additional findings include agenesis of
the corpus callosum, interhypothalamic adhesion (small straight
arrow), tectal dysplasia (small curved arrow), and hypoplasia of the
vermis (long straight arrow).
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abnormalities exist. However, 1 midline abnormality should
heighten radiologists’ suspicion for others, and all abnormalities
should be carefully documented in an effort to diagnose an
underlying syndrome/disorder, or at least to lay the groundwork
for a future diagnosis. Massa intermedia abnormalities can be a
clue to the presence of additional abnormalities.

The MI mean surface area was 436 24mm2 in examinations
with normal findings. This is congruent with previous pathology
literature comprising mostly adult specimens (mean surface area
range, 13–46mm2).25-28 Although the average MI surface area

did not significantly differ between groups, MI dysmorphology
was more common in the midline abnormality group (27% ver-
sus 3%). MI dysmorphology has been reported in several diseases.
Chiari II malformation–related MI thickening may be the best-
known disease-associated condition.18 Yamasaki et al19 found MI
thickening in all 6 patients with X-linked hydrocephalus exam-
ined by MR imaging. Loss of function L1 cell adhesion molecule
(L1CAM) gene defects seems to result in the most severe neuroi-
maging phenotype, with 100% prevalence of MI thickening.20 In
diencephalic-mesencephalic junction dysplasia, the MI may be
dysplastic and connected to the midbrain.22 MI thickening was
also demonstrated in 60% (3/5) of patients with 6q terminal dele-
tion syndrome.29

MI size tends to decrease with age in adults.15,25,30 However,
the association between MI abnormality and age has not been
previously addressed in children. We found no relationship
between age and MI abnormalities. On the other hand, the MI
surface area decreased in more than one-third of follow-up
examinations in the midline abnormality group. The transverse
diameters of the MI, anterior commissure, and third ventricle
were correlated variables, and the MI area was inversely related
to them. Prior studies have also shown inverse relationships
between the third ventricle diameter and MI thickness.3,10,24,30,31

Acquired MI absence can occur secondary to hydrocephalus-
induced rupture.32 If we add our findings to the existing litera-
ture, it seems that MI volume loss and/or absence can occur in 3
main scenarios: 1) congenital, decreased or lack of the normal MI
constraint leading to third ventriculomegaly; 2) acquired, primary
or secondary MI volume loss associated with loss of cerebral vol-
ume; and 3) acquired, increased third ventricular pressure/dila-
tion causing stretching or rupture.

MI duplication has been sparsely described on postmortem
examination and imaging.26,28,33-35 By means of MR imaging, it
has been shown in Dandy-Walker continuum and in a patient
with a presumed-but-unknown genetic disorder.33,34 The MI was
duplicated in 1 of our patients with midline malformations,
including callosal dysgenesis and anterior commissure hypoplasia.

Previous literature mainly from adult subjects has shown the
prevalence of MI absence in healthy subjects to be 2%–25%; this
wide range is probably related to varied imaging and pathology
techniques used in its assessment.2,3,5,11-13,15,25-28,31,36 Two prior
imaging studies, one primarily and the other exclusively in adults,
performed using 3T MR imaging and 1-mm-thick sections akin
to our study, found the normal prevalence of MI absence to be
4%–10%.35 Similar to these, we discovered MI absence in 12% of
pediatric patients with otherwise normal MR imaging findings.
MI absence may be present at a higher rate in association with
other brain malformations. For instance, the MI was absent in
greater than one-third of patients with Cornelia de Lange syn-
drome in 1 study.21 We determined that the MI was more likely
to be absent in children with additional structural midline brain
abnormalities. Furthermore, the MI was absent in all of our
patients with Dandy-Walker malformation and infrequently in
septo-optic dysplasia.

Reported MI sex differences have been conflicting, but
many studies have suggested a higher prevalence of MI ab-
sence and decreased MI volume in males compared with

FIG 5. Sagittal midline T2WI from a patient with diencephalic-mesen-
cephalic junction dysplasia showing a thickened thalamic massa inter-
media connected to the midbrain (arrow). The midbrain is dysplastic
with associated aqueductal stenosis and consequent hydrocephalus.

FIG 6. Sagittal midline T1WI depicting MI thinning/hypoplasia in a
patient with Aicardi syndrome (arrow). Other findings include callosal
dysgenesis and a pericallosal arachnoid cyst (star).
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females.5,23,27,28,31,36 In contrast, we found no significant sex
differences between groups among the variables examined. It is
possible that the reported sexual dimorphism of the MI may be
present only in the adult population.

MI location impacts local CSF flow dynamics.23 The maxi-
mum pressure within the third ventricle can vary up to 50%
on the basis of MI location.23 In healthy patients, the MI
tends to be centered in the anterior/superior quadrant of the
third ventricle.26,28 Our findings are in agreement. However,
it was significantly more variable in location in the midline
abnormality group.

Hippocampal abnormalities increased the likelihood of
MI absence, altered surface area, and abnormal morphology.
Animal studies have demonstrated functional connectivity
between the medial temporal lobes and MI. In felines with
amygdaloid-stimulation-induced seizure kindling, the MI
plays a role in interhemispheric ictal propagation.37 MI-
induced kindling in rats resembles an amygdaloid kindling
response.38 N-methyl-D-aspartate injection into the MI indu-
ces seizures and facilitates limbic kindling in rats.39,40

However, under-rotation, or “incomplete hippocampal inver-
sion” may be found in up to 17% of healthy subjects, similar
to our findings in the brain MR imaging group with normal
findings.41

MI absence, surface area, and morphology were predicted by
the presence of an interhypothalamic adhesion. Congenital inter-
hypothalamic adhesions may be markers of additional midline
abnormalities.42-45

Several limitations warrant mention. We acknowledge that
MI prevalence and size cannot be verified without histologic cor-
relation. However, 3-plane high-resolution T1WIs were carefully
scrutinized to make determinations. Furthermore, MI prevalence
and size in the healthy group are within the range previously
reported for healthy adults. Even with current state-of-the-art
MR imaging techniques, however, MI absence may be underap-
preciated because volume averaging remains a challenge, espe-
cially when the third ventricle is small (Fig 2). Therefore, there is
a tendency to underdiagnose MI absence and overestimate MI
size with neuroimaging. Another limitation is that the mean age
between groups was statistically different, with the abnormal
group being imaged at a younger age on average. This difference
was unavoidable given the retrospective nature of the study.
Nonetheless, there was no difference within or between groups
with regard to MI absence, area, or morphology. Another poten-
tial limitation is that most patients in the healthy group were
imaged due to headache symptoms, making pediatric migraine a
potential-albeit-unlikely confounding variable. Finally, few uni-
fied diagnoses were known in the midline abnormality group,
limiting disease-specific generalizability. Future work would be
useful to determine whether disease-specific MI abnormalities
exist.

CONCLUSIONS
Most pediatric patients have a thalamic massa intermedia cen-
tered in the anterior/superior third ventricle. The MI is more
frequently absent, dysmorphic, and/or displaced in pediatric
patients with additional midline abnormalities than in those

without. These findings support the notion that the MI cannot be
ignored during MR imaging assessment of the brain. It can be a
clue to the presence of additional abnormalities. Normal-variant
MI absence is a diagnosis of exclusion, which should only be pro-
posed when it is isolated and in patients without any associated
clinical deficits.
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