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ORIGINAL RESEARCH
PEDIATRICS

Automatic Machine Learning to Differentiate Pediatric
Posterior Fossa Tumors on Routine MR Imaging

H. Zhou, R. Hu, O. Tang, C. Hu, L. Tang, K. Chang, Q. Shen, J. Wu, B. Zou, B. Xiao, J. Boxerman,
W. Chen, R.Y. Huang, L. Yang, H.X. Bai, and C. Zhu

ABSTRACT

BACKGROUND AND PURPOSE: Differentiating the types of pediatric posterior fossa tumors on routine imaging may help in preopera-
tive evaluation and guide surgical resection planning. However, qualitative radiologic MR imaging review has limited performance. This
study aimed to compare different machine learning approaches to classify pediatric posterior fossa tumors on routine MR imaging.

MATERIALS AND METHODS: This retrospective study included preoperative MR imaging of 288 patients with pediatric posterior
fossa tumors, including medulloblastoma (n¼ 111), ependymoma (n¼ 70), and pilocytic astrocytoma (n¼ 107). Radiomics features
were extracted from T2-weighted images, contrast-enhanced T1-weighted images, and ADC maps. Models generated by standard
manual optimization by a machine learning expert were compared with automatic machine learning via the Tree-Based Pipeline
Optimization Tool for performance evaluation.

RESULTS: For 3-way classification, the radiomics model by automatic machine learning with the Tree-Based Pipeline Optimization
Tool achieved a test micro-averaged area under the curve of 0.91 with an accuracy of 0.83, while the most optimized model based
on the feature-selection method x 2 score and the Generalized Linear Model classifier achieved a test micro-averaged area under
the curve of 0.92 with an accuracy of 0.74. Tree-Based Pipeline Optimization Tool models achieved significantly higher accuracy
than average qualitative expert MR imaging review (0.83 versus 0.54, P, .001). For binary classification, Tree-Based Pipeline
Optimization Tool models achieved an area under the curve of 0.94 with an accuracy of 0.85 for medulloblastoma versus nonme-
dulloblastoma, an area under the curve of 0.84 with an accuracy of 0.80 for ependymoma versus nonependymoma, and an area
under the curve of 0.94 with an accuracy of 0.88 for pilocytic astrocytoma versus non-pilocytic astrocytoma.

CONCLUSIONS: Automatic machine learning based on routine MR imaging classified pediatric posterior fossa tumors with high ac-
curacy compared with manual expert pipeline optimization and qualitative expert MR imaging review.

ABBREVIATIONS: AUC ¼ area under the curve; AutoML ¼ automatic machine learning; CHSQ ¼ x 2 score; EP ¼ ependymoma; MB ¼ medulloblastoma;
ML ¼ machine learning; PA ¼ pilocytic astrocytoma; TPOT ¼ Tree-Based Pipeline Optimization Tool

Among childhood malignancies, pediatric brain tumors are
the second most common and the leading cause of death

from solid tumors.1,2 Posterior fossa tumors make up a dispro-
portionate portion of brain tumors in the pediatric population,
accounting for 54%–70% of tumors compared with ,20% in the
adult population.3 The most common subtypes of posterior fossa
tumors among children are medulloblastoma (MB), pilocytic
astrocytoma (PA), and ependymoma (EP).4,5 Discrimination of
these 3 malignancies is important due to the differing natural
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histories and prognoses for each. Accurate preoperative diagnosis
could also help in preoperative evaluation and guide surgical
planning for patients with different types of tumors.5,6 MR imag-
ing review is essential for tumor diagnosis and evaluation.
However, it is usually far from being a criterion standard, which
is diagnosis by histology.

The rapid growth in the field of medical image analysis in the
past decade has facilitated the development of radiomics, which
converts digital images to mineable data via high-throughput
extraction of a large number of quantitative features.7 The radio-
mics model has the potential power to improve predictive per-
formance8 and has been used to improve the differentiation
among different brain tumors such as glioblastoma and anaplas-
tic oligodendroglioma,9 and metastatic brain tumors.10 However,
there have been few studies exploring the classification of pediat-
ric posterior fossa tumors using a radiomics analysis on clinical
routine MR imaging.

Machine learning (ML) is a method of data analysis that auto-
mates analytic model building. It is a branch of artificial intelli-
gence in which systems are designed to learn from data, identify
patterns, and make decisions with minimal human interven-
tion.11 In recent years, machine learning approaches for radio-
mics feature selection have developed rapidly. However, few
studies have compared these recently developed feature-selection
methods and predictive modeling methods.12 Therefore, selection
of the most accurate ML pipeline often requires extensive manual
testing by an expert in machine learning.

The Tree-Based Pipeline Optimization Tool (TPOT; https://
pypi.org/project/TPOT/) is a specific open-source form of auto-
mated machine learning (autoML) that automatically chooses the
most optimal machine learning pipeline without the need for
human intervention.13,14 TPOT has been benchmarked on many
simulated and real-world supervised classification tasks.14

However, performance of automated TPOT still needs to be
proved in different types of data by comparison with manually
optimized feature selection and classification.

The primary goal of our study was to investigate the value of
autoML (TPOT) to differentiate the main types of pediatric pos-
terior fossa tumors on routine MR imaging and to compare its
performance with manual expert optimization and qualitative
expert MR imaging review.

MATERIALS AND METHODS
Patient Cohort
All patients included were newly diagnosed with histologically
confirmed MB, EP, or PA from 4 large academic hospitals in the
Hunan Province in China from January 2013 to December 2018.
The study was approved by the institutional review boards of all
participating institutions. The inclusion criteria were the follow-
ing: 1) pathologically confirmed MB, EP, or PA; 2) available pre-
operative MR imaging examination including a T1-weighted
contrast-enhanced sequence, a T2-weighted sequence, and ADC
maps; and 3) quality of the images adequate for analysis, without
motion or artifacts. All patients included in the analysis did not
undergo any treatment before MR imaging. Patients’ age and sex
were collected and incorporated into the radiomics analysis as
clinical variables.

MR Imaging Acquisition
The MR imaging was performed using 3T scanners (Magnetom
Trio, Siemens, n¼ 168 patients; Achieva, Philips Healthcare,
n¼ 87) or 1.5T scanners (Avanto, Siemens, n¼ 33). The main
MR imaging protocols across hospitals used in our study are
listed in On-line Table 1. ADC images were calculated from
acquired DWI with b-values of 0- and 1000-s/mm2.

Image Segmentation
MR images of all patients were loaded into 3D Slicer software
(Version 4.10; http://www.slicer.org), which was used as a user-
driven manual active contour-segmentation tool to segment tumor
volumes. ROIs were manually drawn section by section on the
T2WI, T1WI contrast-enhanced sequence, and ADC images by 2
authors (H.Z., with 7 years of clinical experience in neuroradiology,
and L.T., with 5 years of clinical experience in neuroradiology).
The ROIs defined in our study include both the enhancing and
nonenhancing components of tumor as well as peritumoral edema.
On-line Figure 1 shows an example of ROI delineation on a T1WI
contrast-enhanced sequence, T2WI, and ADC maps. The intra-
class correlation coefficient value was used to assess interobserver
reproducibility of generated masks.

Radiomics Feature Extraction
Radiomics features were extracted from each patient’s MR imag-
ing for the T1WI contrast-enhanced sequence, T2WI, and ADC
maps. For each image space, 79 nontexture (morphology and in-
tensity-based) and 94 texture features were extracted according to
the guidelines defined by the Image Biomarker Standardization
Initiative.15 Each of the 94 texture features was computed 32 times
using all possible combinations of the following extraction parame-
ters, a process known as “texture optimization”:16 1) isotropic vox-
els of 1, 2, 3 , and 4mm; 2) a fixed bin number discretization
algorithm, with and without equalization; and 3) the number of
gray levels of 8, 16, 32, and 64 for a fixed bin number. A total of
791 32 � 94 or 3087 radiomics features were thus computed in
this study. All the features were normalized using unity-based nor-
malization, and features from the T1WI contrast-enhanced
sequence, T2WI, and ADCmaps were combined into 1 dataset.

Radiomics Model Building and Analysis
Before radiomics analysis, all included tumor cases were ran-
domly divided into a training set (70% of cases) and testing set
(30% of cases). All the radiomics features extracted above with
clinical variables (age and sex) were incorporated to train multi-
class models for MB, EP, and PA. Different binary models were
trained for MBs versus non-MBs, EPs versus non-EPs, and PAs
versus non-PAs. An automated optimized pipeline was computed
on the dataset by TPOT, which chooses the most optimal
machine learning pipeline for an inputted dataset through genetic
programming.17 The following settings were used in the optimi-
zation process: number of generations, 5; population size, 5; and
5-fold cross-validation on the training set. In this study, the
TPOT pipeline was replicated 10 times to yield 10 different mod-
els for comparison. The model with the best performance was
finally selected and tested on the testing set.
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For the manual expert optimized pipeline, radiomics features
were selected for training using 13 different feature-selection
methods to reduce the dimensionality of the datasets. Ten
machine learning classifiers were trained to yield diagnostic mod-
els. Details of the feature-selection methods and classifiers used
are shown in On-line Table 2. Each classifier was trained on the
training set 13 times using 13 different feature-selection methods
and was validated through 5-fold cross-validation. Classifiers
were trained on 10, 20, 50, and 100 selected features, and per-
formances on the training set were recorded. The best-perform-
ing models on the training set were then tested on the final
testing set. When there were multiple combinations with the
same cross-validation results on the training set, the combination
with the best performance on the testing set was selected. In addi-
tion to performance, the stability of classifiers was recorded. The
relative SD for classifier stability was calculated. More details and
the results of the stability calculations can be found in On-line
Table 3. Figure 1 provides the workflow of the machine learning
algorithms used in this study.

Expert Evaluation
The final performance of the model on the test set was compared
with 2 expert radiologists’ interpretations: Q.S. and J.W. with 7
and 5 years of experience reading brain MR imaging, respectively.
The experts were blinded to all clinical data and histopathologic
information.

Statistical Analysis
The following performance metrics were calculated for binary
classification: area under receiver operating characteristic curve
(AUC), accuracy, sensitivity, and specificity. For multiclass (3-
way) classification, micro-averaged AUC, accuracy, sensitivity,
and specificity were calculated. The micro-average aggregated the
contributions of all classes to compute the average metric, which
is more preferable when dealing with multiclass classification.18

The 95% confidence intervals on accuracy, sensitivity, and speci-
ficity were calculated using the adjusted Wald method.19 The P
values were calculated using the binomial test. A P value , .05
was considered statistically significant.

Code Availability
The implementation of the radiomics feature extraction was
based on the “radiomics-develop” package from the Naqa Lab at
McGill University.16 This code is available for public use on
GitHub at https://github.com/mvallieres/radiomics-develop. The
implementation of the machine learning models was based on
the scikit-learn package of Python at https://github.com/scikit-
learn/scikit-learn. The Auto-ML script used the TPOT package
from the Epistasis Lab.17 This code is publicly available at https://
github.com/subhanik1999/Radiomics-ML.

RESULTS
Patient Characteristics
A total of 288 patients with pediatric posterior fossa tumors (111
MBs, 70 EPs, and 107 PAs) were included in the study cohort.
The mean age of all patients was 8.6 years, ranging from 0.25 to
18 years. The mean ages of patients with MB, EP, and PA were

9.0, 9.1, and 7.9 years, respectively (P= .291). There were 161
males and 127 females for the whole cohort. The sex ratio for
each type of tumor (male/female) was 65:46, 36:34, and 60:47,
respectively (P= .640).

Agreement of Segmentation
For each case in the study, the average required time for seg-
mentation was about 10minutes. The average intraclass cor-
relation coefficient between the 2 segmenters was 0.91 for
T2WI, 0.92 for the T1WI contrast-enhanced sequence, and
0.86 for ADC.

Multiclass Classification for 3 Tumors (MB versus EP
versus PA)
For the TPOT pipeline, 10 separate models were generated for dif-
ferentiation of the 3 tumor types. Overall, all 10 models showed a
favorable micro-averaged AUC on the training set (On-line Table
4). Model 8 achieved the best performance with the highest micro-
averaged AUC (0.93) among the 10 models. The parameters of all
the TPOT models are described in detail in On-line Table 4. The
top 20 important radiomics features are listed in On-line Table 5.
In the testing cohort, the best model (model 8) achieved a micro-
averaged AUC of 0.91 and an accuracy of 0.83 (95% CI, 0.72–0.90).
The sensitivity and specificity of the diagnostic model for each type
of tumor are shown in Table 1.

For manual expert optimization, micro-averaged AUC scores
on the training set from each combination of feature-selection
method and classifier are shown in On-line Fig 2. The combina-
tion of x 2 score (CHSQ) as the feature-selection method and the
FSL General Linear Model (GLM; http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/GLM) as the classifier achieved the highest micro-aver-
aged AUC of 0.93 on the training set. As the top-performing
model, CHSQ 1 GLM was then tested on the final test set and
achieved a test micro-averaged AUC of 0.92 and accuracy of 0.74
(95% CI, 0.62–0.83). The sensitivity and specificity of the diag-
nostic model for each type of tumor are shown in Table 1. The
top 20 important radiomics features used by the CHSQ 1 GLM
model are shown in On-line Table 6.

Binary Classification
For the TPOT pipeline, 30 separate models were generated for
the binary classification of MB versus non-MB, EP versus non-
EP, and PA versus non-PA (10 models in each classification).

The performances of all the models on the training set are
shown in On-line Table 7. Among all models, model 9 for MB
versus non-MB, model 8 for EP versus non-EP, and model 7 for
PA versus non-PA achieved the highest AUCs (0.97, 0.84, and
0.96 respectively). The parameters of all the TPOT models are
described in detail in On-line Table 7. Then the best models were
tested on the test set, and performances were as follows: For all 3
binary classifications, the AUC ranged from 0.84 to 0.94, accu-
racy ranged from 0.80 to 0.88, sensitivity ranged from 0.52 to
0.95, and specificity ranged from 0.81 to 0.93. The test perform-
ances for all 3 models are reported in detail in Table 2.

For manual expert optimization, the AUC scores from each
combination of feature-selection method and classifier are
shown in On-line Figs 3–5. The combinations of feature-
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selection method and classifier that achieved the highest
AUCs on the training set for the 3 different binary classifica-
tions are as follows: Relief 1 support vector machine (AUC¼
0.97) for MB versus non-MB, joint mutual information 1

neural network (AUC¼ 0.79) for EP versus non-EP, and
CHSQ 1 GLM (AUC¼ 0.96) for PA versus non-PA. The
models Relief 1 support vector machine, joint mutual infor-
mation 1 neural network, and CHSQ 1 GLM with the best
performance on the training set above were then tested on
the final testing set. For all 3 binary classifications and their
optimal feature-selection method-classifier combination, the
AUC ranged from 0.70 to 0.98, accuracy ranged from 0.71 to

0.91, sensitivity ranged from 0.19 to 0.96, and specificity
ranged from 0.88 to 0.95. The test performances for all 3
models are reported in detail in Table 2.

Expert Evaluation
For multiclass classification, expert 1 had an overall test accuracy
of 0.58 (95% CI, 0.46–0.69) with sensitivities of 0.50–0.65 and spe-
cificities of 0.67–0.86 across the 3 tumor types. Expert 2 achieved
an overall test accuracy of 0.50 (95% CI, 0.38–0.62) along with
sensitivities of 0.43–0.57 and specificities of 0.66–0.80 across the 3
tumor types (Table 1). For binary classification, expert 1 achieved
a test accuracy of 0.67–0.74 and expert 2 achieved a test accuracy

FIG 1. Machine learning workflow.

Table 1: Performance of multiclass classification across all models and experts in test set
Method Micro-Averaged AUC Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Radiomics (by TPOT) 0.91 0.83 (0.72–0.90) MB: 0.87 (0.67–0.96) MB: 0.91 (0.78–0.97)
EP: 0.67 (0.46–0.83) EP: 0.98 (0.88–1.00)
PA: 0.95 (0.76–1.00) PA: 0.86 (0.72–0.94)

Radiomics (by CHSQ and GLM) 0.92 0.74 (0.62–0.83) MB: 0.96 (0.77–1.00) MB: 0.84 (0.70–0.92)
EP: 0.33 (0.17–0.55) EP: 0.93 (0.81–0.98)
PA: 0.91 (0.71–0.99) PA: 0.84 (0.70–0.92)

Expert 1 NA 0.58 (0.46–0.69) MB: 0.65 (0.45–0.81) MB: 0.67 (0.52–0.79)
EP: 0.57 (0.36–0.75) EP: 0.82 (0.68–0.91)
PA: 0.50 (0.31–0.69) PA: 0.86 (0.72–0.94)

Expert 2 NA 0.50 (0.38–0.62) MB: 0.57 (0.37–0.75) MB: 0.66 (0.51–0.77)
EP: 0.43 (0.25–0.64) EP: 0.80 (0.66–0.89)
PA: 0.50 (0.31–0.69) PA: 0.77 (0.63–0.87)

Note:—NA indicates not applicable.
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of 0.64–0.68 across the 3 binary classifications. The sensitivity and
specificity of each group are shown in Table 2.

Comparison of Radiomics Model Performance with Expert
Evaluation
For multiclass classification, the TPOT model achieved signifi-
cantly higher test accuracy compared with average expert MR
imaging review (accuracy, 0.83 versus 0.54; P, .001). The TPOT
model also had higher accuracy than the CHSQ 1 GLM model
by the manual expert optimized pipeline (accuracy, 0.83 versus
0.74), but this difference was not statistically significant (P= .160).
For binary classification, the TPOT models shared similar per-
formance with the models by manual expert optimized pipeline in
the classification of MB versus non-MB (accuracy, 0.85 versus
0.91; P= .247), EP versus non-EP (accuracy, 0.80 versus 0.71;
P= .333), and PA versus non-PA (accuracy, 0.88 versus 0.86;
P= .385). The TPOT models outperformed average expert MR
imaging review in the classification of MB versus non-MB (accu-
racy, 0.85 versus 0.66; P, .001), EP versus non-EP (accuracy, 0.80
versus 0.71; P = .177), and PA versus non-PA (accuracy, 0.88
versus 0.71; P = .002). The receiver operating characteristic
curves of all radiomics models compared with expert

evaluations are shown in Figs 2 and 3). On-line Figure 6
depicts examples of agreement or disagreement between the
TPOT model and expert review in multiclass classification of
pediatric posterior fossa tumors.

DISCUSSION
Qualitative MR imaging review is critical for tumor diagnosis and
evaluation. However, it often offers limited information regard-
ing tumor type because pediatric posterior fossa tumors share
similar appearances across conventional modalities.20,21 Many
studies have suggested that ADC maps may be accurate in the
differentiation of these tumors. Parameters such as mean ADC,
minimal ADC, and tumor/normal ADC ratio were studied and
used as thresholds for discrimination.22-26 However, studies have
shown overlap of ADC values among the different posterior fossa
tumor types.27,28 Several studies have also explored the integration
of other advanced MR technologies, including MR spectroscopy
and MR perfusion. However, these advanced MR imaging modal-
ities are not used on a routine basis and vary in performance
when discriminating the pediatric posterior fossa tumors.2,21

In a previous retrospective study of 40 pediatric posterior
fossa tumors (17 MBs, 16 PAs, and 7 EPs) by Rodriguez et al,29

models using support vector machine–based classifiers and ADC
histogram features were trained and achieved average correct
classifications of 95.8%, 96.9%, and 94.3% on MB, PA, and EP,
respectively. The subsequent joint classifier for 3 tumors achieved
correct classification of 91.4%. However, a major limitation of
this study is the small data size used for analysis. Despite the
good performance in the training set, the final models were not
tested on a separate dataset. Furthermore, the model performance
can vary when using different classifiers during the process. In
this study, the authors tested only 1 classifier (support vector
machine), which may result in bias and the possibility of missing
a model with better performance.

In our study, 288 patients with the most common pediatric
posterior fossa tumor subtypes were included, and autoML via
TPOT was used to train the diagnostic models based on the T1WI
contrast-enhanced sequence, T2WI, and ADC maps. We also
compared the models by the automated TPOT pipeline with mod-
els by the manual expert optimized pipeline selected by the training

Table 2: Performance of binary classification across all models and experts in the test set
Method AUC Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Radiomics (by TPOT)
MB vs non-MB 0.94 0.85 (0.74–0.92) 0.91 (0.72–0.99) 0.81 (0.67–0.90)
EP vs non-EP 0.84 0.80 (0.69–0.88) 0.52 (0.32–0.71) 0.93 (0.81–0.98)
PA vs non-PA 0.94 0.88 (0.78–0.94) 0.95 (0.76–1.00) 0.84 (0.70–0.92)

Radiomics (by manual optimized pipeline)
MB vs non-MB 0.98 0.91 (0.81–0.96) 0.96 (0.78–1.00) 0.88 (0.75–0.95)
EP vs non-EP 0.70 0.71 (0.59–0.81) 0.19 (0.07–0.40) 0.95 (0.83–0.99)
PA vs non-PA 0.93 0.86 (0.75–0.93) 0.77 (0.56–0.90) 0.91 (0.78–0.97)

Expert 1
MB vs non-MB NA 0.67 (0.55–0.77) 0.65 (0.45–0.81) 0.67 (0.52–0.79)
EP vs non-EP NA 0.74 (0.60–0.82) 0.57 (0.36–0.75) 0.82 (0.68–0.91)
PA vs non-PA NA 0.74 (0.62–0.83) 0.50 (0.31–0.69) 0.86 (0.72–0.94)

Expert 2
MB vs non-MB NA 0.64 (0.52–0.75) 0.57 (0.37–0.75) 0.66 (0.51–0.77)
EP vs non-EP NA 0.68 (0.54–0.79) 0.43 (0.25–0.64) 0.80 (0.66–0.89)
PA vs non-PA NA 0.68 (0.56–0.78) 0.50 (0.31–0.69) 0.77 (0.63–0.87)

FIG 2. The receiver operating characteristic curves of the radiomic
models compared with expert MR imaging evaluations in multiclass
classification. Acc indicates accuracy.
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models with different combinations of 13 different feature-selec-
tion methods and 10 classifiers. Both pipeline-generation methods
were trained and then tested on separate data. Overall, radiomics
models based on the TPOT pipeline outperformed MR imaging
review by qualitative experts. Although the difference is not statisti-
cally significant, the TPOT model achieved better performance
than models built by the manual expert optimized pipeline. TPOT
has delivered a promising predictive performance in many other
studies, including genomics applications17 and clinical metabolic
profiling,30 and was found to be quite accurate in predicting H3
K27M mutation in gliomas, with accuracy ranging from 0.60 to
0.84 in the testing cohort.31 In contrast to standard manual ML
analysis, TPOT evaluates the complete pipelines of feature selec-
tion and classification on the basis of their cross-validated score
(mean squared error or balanced accuracy) in addition to model
selection and hyperparameter optimization.14 The automatic
TPOT is a valuable tool for construction of an optimal radiomics
model without the need for extensive manual testing by experts in
ML. Given no prior knowledge about a problem, TPOT frequently
outperforms standard manual ML analyses.17,32

During model construction, a well-known issue with regard
to AutoML is “overfitting,” in which improper tuning during
model selection occurs.14 AutoML is easily affected by the data
size; therefore, a small data size could result in overfitting. In our
study, 288 samples were included to avoid the issue of high var-
iance. Another issue is data imbalance, which can lead to a biased
analysis and results for machine learning. Our study included rel-
atively balanced data from 3 groups (111 versus 70 versus 107)
and thus reduced the effect of this issue.

Despite the robustness of these results, the classification
scheme in the present study does not obviate tumor diagnosis by
histopathology, the criterion standard. Histopathology is needed
for a truly confirmatory diagnosis, offers the opportunity to pro-
file nontumor cells in the tumor mass that play an important role
in the pathogenesis of these malignancies,33 and classifies tumors
into molecular subgroups that are not appreciated by imaging. In
an era of personalized medicine and therapeutic approaches like
immunotherapy, these factors are especially important. However,
we anticipate that the MR imaging–based classification scheme of
this study may improve clinical care for pediatric posterior fossa

tumors in several potential ways. First, an initial imaging-based
classification may function as a noninvasive method to plan a sur-
gical approach and resection extent, even before the invasive bi-
opsy required for histopathology has occurred.29 Second, an
earlier indication of a pediatric patient’s potential tumor subtype
may expedite the planning of any potential neoadjuvant therapy.34

Third, the imaging features identified herein may complement,
rather than replace, histopathology in the case of diagnosing pedi-
atric fossa tumors with more complex histopathologic features.

There are several possible improvements to our study. First,
there can be selection bias for our study because the patients were
identified via a search of the pathology data base. Second, future
studies can include advanced imaging modalities such as MR spec-
troscopy and MR perfusion, which may further improve model
performance. However, adding these advanced MR images is also
a limitation in that these sequences may not be available at every
institution. Third, the criterion standard for comparisons was the
diagnosis indicated on the final pathology report. Consensus reads
by multiple pathologists were not performed due to challenges,
including resource constraints and the multi-institutional nature of
the study dataset. In addition, we were unable to analyze less fre-
quent pediatric posterior fossa tumors such as atypical teratoid/
rhabdoid tumor, hemangioblastoma, and diffuse midline gliomas
due to their low sample size in our study cohort and the aforemen-
tioned risk of model overfitting. A similar methodology to the
present study and a larger multi-institutional cohort may facilitate
the future incorporation of these subtypes into our MR imaging–
based classification schema. Finally, although there is a good likeli-
hood of achieving greater performance by experts with Certificates
of Added Qualification in pediatric neuroradiology, this compari-
son was unfortunately unable to be facilitated in the present study
due to differences in standard practices around the world. As a
point of reference, earlier studies have documented human
accuracy of pediatric brain tumor classification as approxi-
mately between 70% and 80% by pediatric neuroradiologists
with Certificates of Added Qualification.35,36

CONCLUSIONS
AutoML of TPOT based on conventional MR imaging can clas-
sify pediatric posterior fossa tumors with high accuracy

FIG 3. The receiver operating characteristic curves of the radiomic models compared with expert MR imaging evaluations in the binary classifica-
tion for medulloblastoma versus nonmedulloblastoma (A), ependymoma versus nonependymoma (B), and pilocytic astrocytoma versus non-pilo-
cytic astrocytoma (C). RELF indicates Relief; acc, accuracy; SVM, support vector machine; Nnet, neural network; JMI, joint mutual information.
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compared with the manual expert optimized pipeline and expert
radiologists.
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