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Automated Cerebral Hemorrhage Detection Using RAPID
J.J. Heit, H. Coelho, F.O. Lima, M. Granja, A. Aghaebrahim, R. Hanel, K. Kwok, H. Haerian, C.W. Cereda,

C. Venkatasubramanian, S. Dehkharghani, L.A. Carbonera, J. Wiener, K. Copeland, and F. Mont’Alverne

ABSTRACT

BACKGROUND AND PURPOSE: Intracranial hemorrhage (ICH) is an important event that is diagnosed on head NCCT. Increased
NCCT utilization in busy hospitals may limit timely identification of ICH. RAPID ICH is an automated hybrid 2D–3D convolutional
neural network application designed to detect ICH that may allow for expedited ICH diagnosis. We determined the accuracy of
RAPID ICH for ICH detection and ICH volumetric quantification on NCCT.

MATERIALS AND METHODS: NCCT scans were evaluated for ICH by RAPID ICH. Consensus detection of ICH by 3 neuroradiology
experts was used as the criterion standard for RAPID ICH comparison. ICH volume was also automatically determined by RAPID
ICH in patients with intraparenchymal or intraventricular hemorrhage and compared with manually segmented ICH volumes by a
single neuroradiology expert. ICH detection accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and
positive and negative likelihood ratios by RAPID ICH were determined.

RESULTS:We included 308 studies. RAPID ICH correctly identified 151/158 ICH cases and 143/150 ICH-negative cases, which resulted in high
sensitivity (0.956, CI: 0.911–0.978), specificity (0.953, CI: 0.907–0.977), positive predictive value (0.956, CI: 0.911-0.978), and negative predictive
value (0.953, CI: 0.907–0.977) for ICH detection. The positive likelihood ratio (20.479, CI 9.928–42.245) and negative likelihood ratio (0.046, CI
0.023–0.096) for ICH detection were similarly favorable. RAPID ICH volumetric quantification for intraparenchymal and intraventricular hem-
orrhages strongly correlated with expert manual segmentation (correlation coefficient r¼ 0.983); the median absolute error was 3mL.

CONCLUSIONS: RAPID ICH is highly accurate in the detection of ICH and in the volumetric quantification of intraparenchymal and
intraventricular hemorrhages.

ABBREVIATIONS: CNN ¼ convolutional neural network; ICH ¼ intracranial hemorrhage; LR ¼ likelihood ratio; NPV ¼ negative predictive value; PPV ¼ posi-
tive predictive value

Intracranial hemorrhage (ICH) secondary to trauma, cerebro-
vascular disease, tumors, coagulation disorders, and other dis-

orders results in significant morbidity and mortality.1-3 The
volume and severity of ICH at presentation correlate with neuro-
logic status and likelihood of survival,4,5 and prompt medical and
surgical intervention have been shown to reduce the mortality

rate associated with ICH.6,7 Therefore, accurate and timely ICH
diagnosis is essential for patient treatment, and prompt detection
and interpretation of ICH on NCCT are necessary. Excluding
acute ICH is also a critical component of the evaluation of
patients with stroke for IV thrombolysis.

The presentation of ICH is often nonspecific, and ICH is
most commonly diagnosed on head NCCT.2 Prompt NCCT
interpretation in busy emergency departments and hospitals
remains challenging, and interpretation delays may result in
patient care delays, which can lead to poor outcomes.8 Triage
software that identifies ICH, estimates ICH volume, and alerts
radiologists and clinicians would streamline patient care and
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increase diagnostic confidence. Deep learning convolutional neu-
ral networks (CNNs) represent a technology for automated imag-
ing interpretation that has shown promise in the detection of
ICH and other cerebral emergencies.9-14 However, this technol-
ogy has not yet been adopted in widespread clinical practice.

RAPID ICH (iSchemaView) is an artificial intelligence soft-
ware program developed to identify acute ICH and determine
ICH on NCCT studies. RAPID ICH builds on the widely used
RAPID software platform for the detection of cerebral ischemia in
patients with large-vessel occlusions15-18 and is readily adaptable to
the RAPID mobile triage platform, which is currently used for tri-
age of patients with ischemic stroke to thrombectomy.

In this study, we tested whether RAPID ICH can accurately
detect and volumetrically quantify ICH.

MATERIALS AND METHODS
The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Patient Cohort and Image Acquisition
This retrospective cohort study complied with the Health
Insurance Portability and Accountability Act. Institutional review
board approval was obtained at each site, and the need for
informed consent was waived. NCCTs were obtained from 6
institutions. Only NCCTs that were free of significant motion ar-
tifact were included for analysis.

NCCT studies from multiple vendors (Online Table 1) were
acquired in the axial plane with section thickness that ranged from 1
to 5mm. Radiation doses varied by vendor and location, and these
variables were not controlled for in this study, which was intended

Table 1: Patient demographic details
All ICH2 ICH+ P Valuea

Sex
Female, n (%) 117 (38.0) 53 (33.5) 64 (42.7) ,.0002
Male, n (%) 164 (53.3) 81 (51.3) 83 (55.3)
Unknown, n (%) 27 (8.8) 24 (15.2) 3 (2.0)

Age
20–39 years, n (%) 33 (10.9) 15 (9.9) 18 (12.0) .5692
40–59 years, n (%) 78 (25.8) 43 (28.3) 35 (23.3)
601 years, n (%) 191 (63.3) 94 (61.8) 97 (64.7)

a For a Pearson chi-square test of independence.

FIG 1. Representative imaging examples of ICH correctly detected by RAPID. A. Primary intraparenchymal hemorrhage within the right thalamus
and posterior limb of the right internal capsule (red outline by RAPID). B. Small extra-axial subdural hematoma overlying the right cerebral hemi-
sphere (red outline by RAPID). C. Subarachnoid hemorrhage (red outline by RAPID). D. Subarachnoid and intraventricular (right and left lateral,
third, and fourth ventricles) hemorrhage (red outline by RAPID).

Table 2: Performance of RAPID for ICH detection
RAPID vs Consensus Truth Consensus = Truth
n¼ 308 1 (positive) 0 (negative) Total
RAPID 1 (positive) 151 7 158

0 (negative) 7 143 150
Total 158 150 308
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to sample variations in standard radiology practices. Images were
not tilt corrected or otherwise manipulated before interpretation by
the neuroradiologists in the study. Studies with significant metal or
motion artifact were excluded from the analysis.

RAPID Machine Learning ICH Detection
A deep CNN with a hybrid 2D–3D architecture was trained on a
cohort of 805 NCCT examinations. All head CTs analyzed by

RAPID ICH were postprocessed into 5-
mm-thick axial slices, and 48 images per
study were analyzed by the training data-
set. If CT source data were acquired with
a thickness of ,5mm, images were
merged and averaged into 5-mm thick-
ness before analysis. The training dataset
included NCCT with intraparenchymal
hemorrhage (245 cases; 30%), intraven-
tricular hemorrhage (83 cases; 10%),
extra-axial hemorrhage (70 cases, 9%),
subarachnoid hemorrhage (67 cases, 8%),
and no hemorrhage (457 cases, 57%).
Regions of ICH were manually outlined
by neuroradiology experts and stored as
binary masks that were used as ground
truth for the training analysis. Ground
truth masks were randomly split into
training (80%) and testing (20%) groups.

After training, the ICH detection
module was prototyped in Python/Keras
and implemented on a Linux server (4
CPUs) that was embedded on a larger
imaging platform dedicated to ischemic
stroke analysis (iSchemaView).

Additional details of the CNN are
presented in Online Figure.

RAPID ICH Validation Study Design
The RAPID ICH module was validated
in a different and independent dataset of
308 adult patients that included 158
patients with ICH (52%) and 150 patients
without ICH (48%). The reference stand-
ard or truth was determined by consen-
sus among 3 expert neuroradiologists
who reviewed NCCT images via Horos
(Horos Project, version 3.3) or Osirx
(Pixmeo, version 11). Neuroradiologists
had full control over window width and

levels for all images and were blinded to RAPID ICH results.
The primary end point was the detection of any ICH, which

included intraparenchymal, subdural, epidural, subarachnoid,
and intraventricular hemorrhages, and ICH presence was
recorded in a binary manner (present [ICH1] or absent
[ICH�]). Most subdural hemorrhages were acute, but some had
subacute or chronic components. Epidural and subdural hemor-
rhage are collectively referred to as extra-axial hemorrhage.

The secondary end point was ICH volume for isolated intra-
parenchymal and intraventricular hemorrhages. The reference
standard ICH volume was determined by manual segmentation
by a single neuroradiologist and verification by a second neurora-
diologist. Manual segmentation was performed on axial images.
Regions of confluent hyperattenuation that were consistent with
intraparenchymal or intraventricular hemorrhage were outlined
on all images and volumetrically quantified in Osirix (Pixmeo,
version 11).

A

B

C

FIG 2. Representative false-positive and false-negative ICH examples. A. RAPID incorrectly
detected ICH (false-positive result) in a patient with volume averaging in the anterior cranial
fossa and beam-hardening artifact in the posterior fossa (red outlines by RAPID). B. RAPID failed
to detect ICH (false-negative result) in a patient intraparenchymal hemorrhage in the left thala-
mus (yellow arrow). C. RAPID failed to detect ICH (false-negative result) in a patient with a small
amount of subarachnoid and intraventricular hemorrhage (yellow arrows).

Table 3: RAPID ICH performance
Measure Estimate Lower 95% CI Upper 95% CI

Prevalence 0.513 0.457 0.568
Sensitivity 0.956 0.911 0.978
Specificity 0.953 0.907 0.977
PPV 0.956 0.911 0.978
NPV 0.953 0.907 0.977
Positive LR 20.479 9.928 42.245
Negative LR 0.046 0.023 0.096
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Statistical Analysis
Sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), positive likelihood ratio (LR), and negative
LR were calculated by comparison of RAPID identification of
ICH1 studies compared with the reference standard ICH1. All sta-
tistical analyses were performed using JMP Pro 15 (SAS Institute).

RESULTS
A total of 308 NCCTs were included in the validation study.
NCCT was acquired from 5 CT vendors (Online Table 1), distrib-
uted across the ICH- and ICH1 studies. After training, the proc-
essing time for RAPID’s ICH detection module was ,3 minutes
per study.

NCCT was derived from 117 female patients (38.0%) and 164
male patients (53.3%), and sex was unknown in 27 patients

(8.8%). Most patients were 60 years
or older (63.3%), but young patients
(ages 20–39 years) were well repre-
sented (33 patients, 10.9%). These
demographic data are summarized in
Table 1.

ICH was detected (ICH1) in 158
NCCT studies (51.2%) by neuroradi-
ology experts, and the distribution of
ICH is denoted in Online Table 2.
Intraparenchymal hemorrhage was
part of most ICH1 NCCT studies
(79 cases, 50%), and extra-axial hem-
orrhage (39 cases, 25%), subarach-
noid hemorrhage (25 cases, 16%),
intraventricular hemorrhage (10
cases, 6%), and other hemorrhage (5
cases, 3%) were less common.

We compared ICH detection by
RAPID with the consensus of 3
expert neuroradiologists (Table 2).
RAPID correctly identified 151/158
ICH1 cases and 143/150 ICH–

cases (Figs 1 and 2). Therefore,
RAPID had a high sensitivity
(0.956, CI: 0.911–0.978), specific-
ity (0.953, CI: 0.907–0.977), PPV
(0.956, CI: 0.911–0.978), and NPV
(0.953, CI: 0.907–0.977) for ICH
detection (Table 3). The positive
LR (20.479, CI 9.928–42.245) and
negative LR (0.046, CI 0.023–
0.096) for ICH detection were sim-
ilarly favorable. NCCT in which
RAPID did not detect hemorrhage
(false-negative cases) involved
cases with small volumes of ICH
(,1.5 mL in all instances) that
were intraparenchymal, intraven-
tricular, and subdural in location
(Fig 2).

We then determined the accuracy
of RAPID for ICH volumetric quantification. ICH volume was auto-
matically quantified from the segmentation using Osirix. RAPID
quantification of ICH volume demonstrated a strong correlation
with the neuroradiology experts (correlation coefficient r=0.983, Fig
3). The mean volumes of ICH in this analysis were 12mL (RAPID)
and 8mL (expert), and the median absolute error was 3mL.

DISCUSSION
In this study, we found that the automated artificial intelligence
RAPID ICH module is highly accurate for the detection of ICH
on NCCT. Moreover, RAPID ICH volumetric quantification of
ICH for intraparenchymal and intraventricular hemorrhage was
highly accurate. These findings have important implications for
the more widespread adoption of artificial intelligence ICH detec-
tion into clinical practice.

FIG 3. Intraparenchymal and intraventricular hemorrhage volumetric agreement between RAPID
and expert interpretation. A and B, Representative example of an intraparenchymal hemorrhage in
the right basal ganglia. Manual segmentation by a neuroradiologist (A, green outline) is well corre-
lated with automated segmentation by RAPID ICH (B, red outline). C. Scatterplot denotes volumet-
ric agreement between RAPID and expert evaluation for NCCT with isolated intraparenchymal or
intraventricular hemorrhage.
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Other studies have used CNNs to detect the presence of ICH
on NCCT.9-11,14 The high sensitivity (96%) and specificity (95%)
of RAPID ICH compare favorably with these prior studies that
found a sensitivity of 70%–98% and a specificity of 87%–95%
for their individual CNN.9-11,14 All 7 false-negative RAPID
ICH evaluations consisted of small ICHs that measured
,1.5 mL in volume, and 6 of the 7 false-positive cases were
attributable to volume averaging. The remaining false-posi-
tive study was read as a dural fold by an expert reader. Future
iterations of this platform might improve the detection of
these small volumes of ICH and the exclusion of false-posi-
tive ICHs with artifact reduction approaches. The use of stud-
ies from multiple centers and the use of neuroradiology
expert interpretations as the criterion standard rather than
radiology reports likely increase the generalizability and ac-
curacy of our study compared with prior studies.

Computer-assisted detection of findings on imaging studies
has been previously used for cancer detection in mammography,
pulmonary nodule detection on chest CT, and colonic polyp
detection,19-21 but these technologies are not based on CNNs and
have limited utility in routine clinical practice. By contrast, CNN
technology has been successfully applied to nonradiology studies,
such as the detection of diabetic retinopathy22 and skin cancer
detection,23 which has prompted efforts to move this technology
into routine medical practice.

The progressive and substantial increase in the amount of
diagnostic imaging studies24,25 places particular stress on the
timely interpretation of NCCT. Delays in interpretation may
lead to delayed identification of ICH, resulting in nonexpedi-
tious patient care that could lead to poor patient outcomes.8

We speculate that the adoption of CNN technology for ICH
detection into routine clinical practice will speed NCCT
interpretations, which must still be performed by a board-
certified radiologist, and patient treatment decisions. Future
studies should be designed to test how this technology
changes radiology workflows and patient care.

The use of automated image processing in acute ischemic
stroke, which is another cerebrovascular emergency that relies on
prompt diagnosis and treatment, is already in widespread clinical
practice after several randomized studies demonstrated the effec-
tiveness of this approach in selecting patients for endovascular
thrombectomy treatment.15-18 We expect that the adoption of
ICH detection in a manner similar to cerebral ischemia detection
will lead to timely detection, resulting in improved care of
patients with hemorrhagic stroke. In addition, the detection of
ICH may also impact the treatment of patients with concomitant
ischemic stroke because the presence of ICH is a contraindication
to treatment with IV thrombolysis and, in some instances, endo-
vascular thrombectomy.

Further studies are required to determine how automated
ICH volume quantification may be best used in clinical prac-
tice. Other studies have found similar accuracy for CNN
methods of ICH volume measurement9,13 as in our study,
which suggests that application of these methods to the care
of patients with intraparenchymal, intraventricular, and even
subarachnoid hemorrhage may have a role in patient treat-
ment and prognostication.

Our study has several limitations. The retrospective design
may introduce bias, and the inclusion of studies from a limited
number of CT vendors and locations may limit the generalizabil-
ity of our findings. Future prospective studies that include a
larger number of sites are required for further validation of our
findings. It is also possible that beam-hardening artifact, particu-
larly within the posterior fossa, may further limit the sensitivity
of RAPID ICH. We also note that although RAPID ICH was
highly accurate in this study, automated ICH detection should
not preclude interpretation by a trained radiologist because even
small undetected hemorrhages might impact outcomes in
patients, such as those with ischemic strokes who are being con-
sidered for IV thrombolysis.

CONCLUSIONS
RAPID ICH is highly accurate in the detection of ICH and in the
volumetric quantification of intraparenchymal and intraventricu-
lar hemorrhages. The overall robustness of this CNN approach
suggests that automated ICH detection is sufficiently developed
for introduction into routine clinical practice.
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