
of April 19, 2024.
This information is current as

Study
CTA-Derived Hemodynamics: A Multicenter
Intracranial Aneurysm Rupture Status Using 

Based Prediction of Small−Machine Learning

Zhang, B. Zhang, B. Hu, G.M. Lu and L.J. Zhang
Z. Shi, G.Z. Chen, L. Mao, X.L. Li, C.S. Zhou, S. Xia, Y.X.

http://www.ajnr.org/content/42/4/648
https://doi.org/10.3174/ajnr.A7034doi: 

2021, 42 (4) 648-654AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57533&adclick=true&url=https%3A%2F%2Flinkprotect.cudasvc.com%2Furl%3Fa%3Dhttps%253a%252f%252fwww.genericcontrastagents.com%252f%253futm_source%253dAmerican_Journal_Neuroradiology%2526utm_medium%253dPDF_Banner%2526utm_c
https://doi.org/10.3174/ajnr.A7034
http://www.ajnr.org/content/42/4/648


ORIGINAL RESEARCH
ADULT BRAIN

Machine Learning–Based Prediction of Small Intracranial
Aneurysm Rupture Status Using CTA-Derived

Hemodynamics: A Multicenter Study
Z. Shi, G.Z. Chen, L. Mao, X.L. Li, C.S. Zhou, S. Xia, Y.X. Zhang, B. Zhang, B. Hu, G.M. Lu, and L.J. Zhang

ABSTRACT

BACKGROUND AND PURPOSE: Small intracranial aneurysms are being increasingly detected while the rupture risk is not well-under-
stood. We aimed to develop rupture-risk models of small aneurysms by combining clinical, morphologic, and hemodynamic infor-
mation based on machine learning techniques and to test the models in external validation datasets.

MATERIALS AND METHODS: From January 2010 to December 2016, five hundred four consecutive patients with only small aneur-
ysms (,5mm) detected by CTA and invasive cerebral angiography (or surgery) were retrospectively enrolled and randomly split
into training (81%) and internal validation (19%) sets to derive and validate the proposed machine learning models (support vector
machine, random forest, logistic regression, and multilayer perceptron). Hemodynamic parameters were obtained using computa-
tional fluid dynamics simulation. External validation was performed in other hospitals to test the models.

RESULTS: The support vector machine performed the best with areas under the curve of 0.88 (95% CI, 0.85–0.92) and 0.91 (95% CI,
0.74–0.98) in the training and internal validation datasets, respectively. Feature ranks suggested hemodynamic parameters, including
stable flow pattern, concentrated inflow streams, and a small (,50%) flow-impingement zone, and the oscillatory shear index coef-
ficient of variation, were the best predictors of aneurysm rupture. The support vector machine showed an area under the curve of
0.82 (95% CI, 0.69–0.94) in the external validation dataset, and no significant difference was found for the areas under the curve
between internal and external validation datasets (P = .21).

CONCLUSIONS: This study revealed that machine learning had a good performance in predicting the rupture status of small aneur-
ysms in both internal and external datasets. Aneurysm hemodynamic parameters were regarded as the most important predictors.

ABBREVIATIONS: AUC ¼ area under the curve; AWSS ¼ averaged WSS; CFD ¼ computational fluid dynamics; CV ¼ coefficient of variation; LR ¼ logistic
regression; ML ¼ machine learning; MLP ¼ multilayer perceptron; OSI ¼ oscillatory shear index; ROC ¼ receiver operating characteristic; SVM ¼ support vec-
tor machine; WSS ¼ wall shear stress

Unruptured intracranial aneurysms are common, with an
overall prevalence of 3.2% in adults worldwide.1 In the

past decades, increasing unruptured aneurysms have been
detected because of wide application of CTA and MRA.
Notably, large numbers of incidentally detected aneurysms
(#87.6%) have small sizes (,3–4mm) and are usually

asymptomatic.2 To date, small aneurysms account for 35%–

47% of ruptured aneurysms and may impose a great burden on
intracranial vessel diseases.3,4

Treatment of patients with unruptured small aneurysms
remains controversial. Some researchers recommend no preven-
tive treatment or imaging follow-up for patients with aneurysmsof
,3mm based on the evidence of low annual growth and rupture
rates of small aneurysms.5,6 Current guidelines from the American
Heart Association and American Stroke Association have no con-
sensus opinion regarding the management of unruptured aneur-
ysms with small (3–5mm) and extra-small (#3mm) sizes.7 Thus,
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it is imperative to evaluate the rupture risk of small aneurysms to
derive optimal clinical decision-making for further treatment and
follow-up.

Various rupture risk factors and constructed scoring systems
have been advocated by researchers.8,9 The correlation of risk fac-
tors (such as clinical, morphologic, and hemodynamic parame-
ters) makes the prediction of aneurysm rupture complicated,
leading to the unreliability of conventional methods such as logis-
tic regression. Current scoring systems are not robust, especially
for small aneurysms, which have to be modelled specifically due
to their unique histologic characteristics.10-12 Therefore, novel
methodologies are required to construct rupture-risk models for
small aneurysms to facilitate clinical decisions.13,14 Aneurysms
were often treated only if any change in size or morphology of
the aneurysm was detected during follow-up, which would result
in a serious bias in the longitudinal study.13 It is feasible to per-
form a cross-sectional study to discriminate the ruptured aneur-
ysms and, further, to apply the model in predicting rupture risk
of unruptured aneurysms.

Machine learning (ML) techniques have attracted attention for
their ability to identify patterns from a large sample dataset with
multiple variables, using a highly effective method that facilitates
the model construction for data-driven prediction or classifica-
tion.15-17 Evidence has suggested that ML algorithms are superior
to traditional counterparts in contexts in which data input is abun-
dant and have potential for complex interactions.17,18 ML has also
been used in the classification of aneurysm rupture status with rel-
atively high accuracy.19,20 However, to the best of our knowledge,
no report to date has developed ML methods for small aneurysm
rupture prediction with routine clinical and morphologic features
combined with hemodynamic variables.

The aim of this study was to characterize patients who have a
higher risk of aneurysm rupture through developing and validating
MLmodels using routinely collected clinical, morphologic, and he-
modynamic variables in an internal cohort and to further test the
indicated models in external datasets from other hospitals.

MATERIALS AND METHODS
Study Population
Between January 2010 and December 2016, one thousand five
hundred seventy consecutive patients with suspected aneurysms or
other cerebral vascular diseases who underwent cerebral CTA in
Jinling Hospital verified by DSA or surgery were collected with the
interval of no more than 3months. The inclusion criterion was
patients with small aneurysms (,5mm).14 Exclusion criteria were
as follows: 1) no aneurysms (n=395); 2) patients with fusiform,
dissecting, and thrombotic aneurysms (n=51); 3) incomplete
image/clinical data (n=50); 4) inadequate CTA image quality or
failed computational fluid dynamics (CFD) simulation (n=67);
and 5) patients with aneurysms of $ 5mm (n=503). Finally, 504
small aneurysms (395 ruptured aneurysms and 109 unruptured
aneurysms) were included and were randomly separated into
training (410, 81%) and internal validation cohorts (94, 19%).

External validation cohorts enrolled patients who underwent
cerebral CTA examinations from the other 2 medical centers
(Tianjin First Central Hospital, Tianjin; and Taizhou People’s
Hospital, Taizhou, Jiangsu). Two neuroradiologists (G.Z.C. and

Z.S. with 7 and 3 years’ experiences in neuroradiology) identified
the location of aneurysms. In the case of disagreement between
the 2 observers, consensus was reached after a joint reading with
a senior neuroradiologist (C.S.Z. with 17 years of neuroimaging
experience). The study flow chart is shown in Fig 1. Cerebral
CTA protocols in the 3 medical centers are shown in the Online
Supplemental Data. Ethics approval was obtained by the institu-
tional review board of Jinling Hospital, Medical School of
Nanjing University, Nanjing, China.

Patient and Aneurysm Characteristics
Clinical characteristics included age, sex, family history of aneur-
ysmal SAH; comorbidities such as hypertension, diabetes melli-
tus, ischemic stroke, and coronary artery diseases; alcohol intake;
and smoking status collected in the in-hospital medical record.
Aneurysm characteristics included the multiplicity, size, shape,
daughter sac, and location. Locations were divided into anterior
communicating artery, ICA, MCA, posterior communicating ar-
tery, and others. Size was defined as the largest diameter meas-
ured on CTA with a volume-rendering algorithm. Specifically,
the assessment of rupture status of an aneurysm was established
as follows: For patients with SAH, when only 1 aneurysm adja-
cent to the cisternal clots was identified with CTA, the aneurysm
was judged to be ruptured; when 1 aneurysm not adjacent to the
cisternal clots was identified, its rupture status was judged intra-
operatively; and when$2 aneurysms were identified, the rupture
status of aneurysm was confirmed intraoperatively.19 Aneurysms
with neither SAH nor symptoms were judged to be unruptured.
We analyzed rupture risk on a per-patient basis for the analysis.
When a patient had multiple aneurysms, the largest one served to
categorize the patient.

Computational Fluid Dynamics–Derived Parameters
The computational model was constructed from CTA. CFD
analysis was performed under pulsatile-flow conditions, and
the procedure has been described in a previous study.21 The
Online Supplemental Data shows the procedure of the devel-
opment of the patient-specific CFD model reconstruction.
Eleven quantitative hemodynamic parameters were used to
describe and analyze the sophisticated blood flow condi-
tions,21,22 including pressure, wall shear stress (WSS), averaged
WSS-absolute (AWSS-ABSOLUTE), averaged WSS-mean
(AWSS-MEAN), WSS gradient, AWSS gradient, oscillatory
shear index (OSI), relative residence time, aneurysm formation
index, gradient oscillatory number, and spatial WSS gradient
(Online Supplemental Data). The coefficient of variation (CV)
was used to describe the dispersion degree of data to demon-
strate the hemodynamics of the aneurysm sac. Qualitative he-
modynamic parameters included flow complexity, impinge
ment zone, stability, and inflow concentration (Online
Supplemental Data).23 Two hundred aneurysms were ran-
domly selected and evaluated independently by 2 observers
trained for this task (G.Z.C. and Z.S.), who were blinded to the
clinical history and rupture status. After validating good inter-
reader agreement, 1 observer (G.Z.C.) performed the qualita-
tive hemodynamic assessment of the remaining aneurysms.
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Construction of Machine Learning Models
All features were preprocessed before model building. The quantita-
tive features were normalized by z scores, while the qualitative fea-
tures were encoded by one-hot encoder. ML methods were applied
in the DeepWise Medical Research platform (https://keyan.
deepwise.com). Supervised ML algorithms with binary classification
(ruptured and unruptured aneurysm) were used to build predictive
models, including logistic regression (LR), random forest, support
vector machine with linear kernel (SVM), andmultilayer perceptron
(MLP). For implementing the procedure, the feature-selection
method was used to reduce the overfitting problem. The best hyper-
parameters of the feature-selection method and models and regula-
rization parameters of each model would be searched automati-
cally on the basis of 10-fold cross-validation. After the optimal

hyperparameters and regularization pa-
rameters were chosen, the entire train-
ing cohort was used to train the model
and the performance was evaluated
on the internal and external validation
cohorts. A brief overview of the models
and the description of the feature-selec-
tion method are shown in the Online
Supplemental Data.

Assessment of Model
Performances
For the LR and MLP models, the pre-
dicted probability of rupture was esti-
mated by the models directly. For the
SVM model, the predicted probability
was the normalized distance of the test
sample to the separating hyperplane.
For the random forest model, the pre-
dicted probability was computed as the
mean predicted probabilities of the trees
in the forest. The performances of the
models were represented as the receiver
operating characteristic (ROC) curve,
the area under curve (AUC), and 95%
confidence interval (CI). The sensitivity
and specificity were determined by the
Youden index. The calibration of the 4
ML models was assessed using the cali-
bration curves in the internal valida-
tion dataset with Locally Weighted
Scatterplot Smoothing.24 The DeLong
test and Bonferroni correction were
applied to compare the AUCs of these
models. Feature importance was ranked
according to the coefficient of each pa-
rameter provided by the corresponding
ML algorithms. Specifically, the feature
importance of the random forest model
refers to the Gini importance.

Statistical Analysis
Quantitative variables were expressed as

mean 6 [SD] if normally distributed, while median and interquar-
tile range were used for non-normally distributed data. Categoric
variables (such as sex, the presence of hypertension, qualitative he-
modynamic parameters) were expressed as frequencies or percen-
tages; the difference in categoric variables was analyzed using the
Pearson x2 test or Fisher exact test when appropriate. For normally
distributed data (such as age, OSICV), an independent-samples t test
was used; otherwise, a Mann-Whitney U test was applied. The inde-
pendent-samples nonparametric test was used to analyze non-nor-
mally distributed data. The interreader agreement of the qualitative
hemodynamic assessment was evaluated by the Cohen k . The CI of
the AUC was calculated by the method of Hanley and McNeil.25

Statistical analyses were performed using SPSS statistical and com-
puting software (Version 22.0.0; IBM), Medcalc for Windows

FIG 1. Flow chart of this study. RA indicates ruptured aneurysm; URA, Unruptured aneurysms; CFD,
computational fluid dynamics.
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(Version 18.2; MedCalc Software), R (Version 3.5.2; http://
www.r-project.org/), and the Scikit-learn package26 in Python
(https://scikit-learn.org/stable/). A 2-sided P value , .05 was
used to represent statistical significance.

RESULTS
Patient and Aneurysm Characteristics
In this retrospective study, most patients with ruptured small
aneurysms were women. These patients were younger and had
a higher proportion of hypertension and a lower proportion of
ischemic stroke and coronary artery disease compared with
those with unruptured aneurysms (all, P, .05). In addition,
more small aneurysms with irregular shapes were found in the
ruptured group. The anterior communicating artery and MCA
tended to have more ruptured aneurysms (all, P, .05), while
the ICA and other intracranial arteries had fewer ruptured
aneurysms (all, P, .05). For hemodynamic parameters, the
ruptured group was more likely to have complex flow patterns
(52.9% versus 33.0%, P, .001), concentrated inflow streams
(61.5% versus 18.3%, P, .001), a small flow-impingement zone
(73.4% versus 28.4%, P, .001), and unstable flow patterns
(57.0% versus 29.4%, P, .001), as well as a smaller PressureCV
gradient oscillatory number, and OSICV and higher AWSS-
MEANCV, WSSCV, AWSS-ABSOLUTECV, WSS gradient, and
aneurysm formation index (all, P, .05) (Online Supplemental
Data). The interobserver agreement for the qualitative hemody-
namic assessment of aneurysms ranged from good to excellent,
with k values from 0.646 to 0.827.

The internal training cohort had 410 cases (320 ruptured
aneurysms), and the internal validation cohort had 94 cases (75
ruptured aneurysms). There were no significant differences for
the clinical, morphologic, and hemodynamic parameters
between the 2 cohorts (all, P. .10) (Online Supplemental
Data). In the external cohorts, 177 patients with cerebral CTA
(131 patients from the Tianjin center and 46 patients from the
Taizhou center) were screened, and 52 patients with small
aneurysms (19 unruptured and 11 ruptured aneurysms in the
Tianjin center, 11 unruptured and 11 ruptured aneurysms in
the Taizhou center) were included (Fig 1). There was a lower
incidence of ruptured aneurysms in the Taizhou and Tianjin
datasets (P= .002 and ,.001, respectively). Because of the small
sample size of both external datasets, we merged all the cases
into 1 external dataset to validate the performance of ML mod-
els (Online Supplemental Data).

Performances of ML Models
The 4 ML models derived from the training dataset performed
equally in all datasets (all, P. .05, DeLong test). The calibration
curves are shown in the Online Supplemental Data. Among
them, the SVM was well-calibrated with the highest AUC in the
internal validation dataset (Table and Fig 2A). The performances
of the other 3 models are shown in the Online Supplemental
Data. The AUCs of the SVM model were 0.88 (95% CI, 0.85–
0.92), 0.91 (95% CI, 0.74–0.98), and 0.82 (95% CI, 0.69–0.94) in
the training, internal, and external validation datasets, respec-
tively. The Delong test showed that the AUC had no significant
difference between internal validation dataset and the external
validation dataset (P= .21).

We further investigated the application of models in the
Tianjin and Taizhou sets (Table and Online Supplemental Data).
The SVM had a slightly higher AUC in the Taizhou set
(AUC=0.90; 95% CI, 0.70–0.99) than that in the Tianjin set
(AUC=0.71; 95% CI, 0.52–0.86), without a significant difference
(P= .15).

Feature Ranks
Selected features used for model fitting are seen in the Online
Supplemental Data.

The feature rank of the corresponding top 10 variants derived
by the SVM algorithm is shown in Fig 2B. Hemodynamics-related
parameters were the leading predictors contributing to the risk
model. Stable flow stream, higher OSICV, male sex, and older age
were protective variables, while concentrated inflow streams, a
small (,50%) flow-impingement zone, MCA, hypertension, larger
size, and irregular shape increased the risk of aneurysm rupture.

We also developed models based on sole clinical, morpho-
logic, or hemodynamic features, respectively, and validated the
models in the internal validation dataset for further evaluation.
Figure 2C demonstrates that the hemodynamic feature–depend-
ent model had a higher AUC (AUC=0.90; 95% CI, 0.84–0.96)
than morphologic features (AUC=0.69; 95% CI, 0.5–0.83;
P= .01) and clinical features (AUC=0.55; 95% CI, 0.4–0.70;
P, .001).

DISCUSSION
In this study, we derived and validated ML-based prediction
models for rupture status of small aneurysms, depending on clin-
ical, morphologic, and hemodynamic characteristics in the inter-
nal and external datasets. Our study highlighted the role of

Performance of SVM to predict rupture status of small aneurysms in the training, internal validation, and external validation
datasets

Training Set
(n = 410)

Internal Validation Set
(n = 94)

External Validation Set
(n = 52)

Tianjin Set
(n = 30)

Taizhou Set
(n = 22)

AUC 0.88 0.91 0.82 0.71 0.90
95% CI 0.85–0.92 0.74–0.98 0.69–0.94 0.52–0.86 0.70–0.99
Sensitivity 73.4% 77.3% 68.2% 54.5% 81.8%
Specificity 91.1% 84.2% 76.7% 73.7% 81.8%
Delong test – – .21a – .15b

Note:—CI indicates confidence interval; LR, logistic regression; SVM, support vector machine; RF, random forest; ROC, receiver operation characteristic; RF, random forest; -, NA.
a P, . 05 means a significant difference exists in AUCs of SVM in the internal and external validation datasets.
b P, . 05 means a significant difference exists in AUCs of SVM in Taizhou and Tianjin sets.
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hemodynamic parameters in predicting small aneurysm rupture
status. We found that the ML models, especially the SVM, had
good performance in the internal and external datasets, indicat-
ing the robustness and generalizability of ML models. Thus, the
ML models provided in this study can be regarded as decision-
support tools of unruptured small aneurysms, while further vali-
dation is required.

Traditional statistical methods, such as multivariable LR, have
explored the association between specific features and the rup-
tured/unruptured end point. However, determination of rupture
risk of aneurysms remains challenging, particularly when the exact
underlying etiology is unclear.27 In addition, multivariable LR has
several limitations, primarily resting on assumptions of the exis-
tence of the linear relationship between the log-odd of the pre-
dicted probability and the variables. ML has shown the potential to
improve diagnostic accuracy and prognostic outcomes compared
with conventional statistical methods.17,20 Our study used 4

representative branches of ML, including the subtypes of logistic
regression, ensemble model, SVM, and neural network. The 4
models had good performance in the internal and external cohorts.
A previous study had compared the logistic regression probability
model with ML classifiers and found that the performance of the
logistic regression probability model was comparable, but the study
did not specifically focus on small aneurysms.28

A convolutional neural network based on images of 3D-DSA
for detecting the rupture status of aneurysms of,7mm had also
been explored.20 And in the presented study, we compared 4 ML
methods combined with CTA-derived hemodynamics and found
that the SVM and MLP had slightly higher AUCs in predicting
small-aneurysm rupture status. The SVM performed better when
applied in the 2 external datasets in terms of generalizability.
Another interesting finding was that SVM, random forest, and
MLP seemed to have less overfitting than LR when applied to the
external validation dataset; among these, SVM had the lowest

FIG 2. Performance of the SVM algorithm, the derived top 10 variables, and the performances of feature—dependent models in the internal
validation dataset. A, ROC curves and AUCs for training and internal and external validation sets. B, The top 10 features of the variables
derived from the SVM algorithm. C, ROCs of the SVM based on the features belonging to the 3 categories separately in the internal valida-
tion dataset.
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overfitting. Considering the higher AUC and the lowest overfit-
ting of the SVM, it is reasonable for us to regard SVM as the
most valuable ML method in this context. The models did not
seem well-calibrated, probably due to the small size of the
dataset.

Most important, our findings highlighted the role of hemody-
namics in the prediction of rupture status of small aneurysms,
which had not been quantitatively identified. The process of rup-
ture of an aneurysm is complex because of the intertwining rela-
tionship between the blood flow and pathologic responses in the
endothelial cells and remodeling of vessel wall.29,30 Blood flow
hemodynamics emerged as an important role that can uncover
the underlying mechanism through hemodynamic-biologic path-
ways.11 Higher WSSCV and lower OSICV were further identified
in our study as the paramount rupture risk factors by the ML
algorithms. CV is a standardized measure of dispersion of a prob-
ability distribution or frequency distribution, and the smaller CV
was, the smaller the extent of variation was. That feature means
that the ruptured small aneurysms had higher WSS variation in
the sac, while OSI had less variation. A similar result had been
previously reported in a case-control study that showed a narrow
cumulative WSS distribution characterizing a hemodynamic
prone-to-rupture range for small-sized aneurysms.31 The spatial
minimum, maximum, average WSS, normalized WSS, spatial
WSS gradient, and OSI had been studied before, and low WSS
and high OSI were known to upregulate endothelial surface adhe-
sion molecules, causing dysfunction of flow-induced nitrous
oxide, increasing endothelial permeability, thus, promoting
inflammatory cell infiltration.31-35 Our study offered a novel
insight into the role of hemodynamics in rupture-risk prediction
of unruptured small aneurysms and can be used as a supplement
to the existing research. For example, the WSS in ruptured small
aneurysms could be lower in minimum/maximum/mean value
and more variated than in unruptured aneurysms, and OSI could
be higher with less variation.

Our study also found that qualitative hemodynamic parame-
ters had an important role in predicting the rupture status of
small aneurysms. The study showed that complex flow patterns,
concentrated inflow concentration, unstable flow, and a smaller
flow impingement zone played a critical role in the prediction of
rupture risk of aneurysms. These findings have been supported
by previous studies that showed ruptured aneurysms were more
likely to be associated with flow types with changing direction of
the blood inflow jet, which will create a single vortex.36 It appears
very instructive to add the qualitative hemodynamic parameters
in predicting rupture status of small aneurysms.

Specifically, we analyzed the distinctive performances of the 4
models in the 2 external datasets separately, among which random
forest and MLP exhibited significant differences (both P= .03).
The reasons can be attributed to the baseline characteristic differ-
ences, in which 9 variables in the Taizhou set and 12 in the Tianjin
set were significantly different, and most of the variables are hemo-
dynamics. Given the different scanner manufacturers in the
Tianjin and Jinling sets (Revolution CT, GE Healthcare, versus
Somatom Definition, Siemens), the hemodynamic differences may
arise from them; this issue requires further investigation. Although
the proportion of ruptured aneurysms was lower in the Taizhou

set (50% versus 78.4% for the Taizhou and Jinling datasets), the
performance of the models was encouraging. These results high-
light the influence of manufacturers on CFD simulation.

We acknowledged that our study had some limitations. First,
this retrospective study aimed to identify the characteristics of
ruptured aneurysms, and the model predicted only the current
rupture status rather than future aneurysm risk. Whether the
model can be used in the rupture-risk prediction of small aneur-
ysms requires further longitudinal studies. Our model is reliable
due to being derived from a large-scale internal cohort of small
aneurysms demonstrated by DSA/surgery and validated in inde-
pendent external validation datasets. Second, the morphologic
changes of aneurysms after rupture were not considered in this
study. Third, the external validation datasets from the other 2
medical centers had small sample sizes and were not verified by
DSA or an operation. Fourth, features of the wall of the vessel
and aneurysm have been investigated for precise evaluations
using high-resolution MR imaging and optical coherence tomog-
raphy, while the elements are not included in the study. Fifth,
CFD itself has some limitations, such as a huge number of differ-
ent parameters, the lack of consistency, and being time-consum-
ing, resulting in difficulties in clinical use with CFD.37 Sixth, the
assessment of the qualitative hemodynamic parameters was based
on the 2 observers, which was subjective and caused intra- and
interobserver variations. Other metrics for automated flow-com-
plexity assessment like the “inflow concentration index” and
“vortex core line length” may help in this context. Thus, a large,
prospective, multicenter study is needed to further demonstrate
our findings.

CONCLUSIONS
Our study provided impressive ML models for predicting rupture
status of small aneurysms by combining clinical, morphologic, and
hemodynamic features. ML methods, especially SVM, had a good
performance in internal and external validation datasets and high-
lighted the role of hemodynamics. Our model has the potential for
identifying high-risk aneurysms and facilitating proper clinical
management of incidentally found small aneurysms.
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