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ORIGINAL RESEARCH
ADULT BRAIN

MGMT Promoter Methylation Status in Initial and
Recurrent Glioblastoma: Correlation Study with DWI and

DSC PWI Features
H.J. Choi, S.H. Choi, S.-H. You, R.-E. Yoo, K.M. Kang, T.J. Yun, J.-h. Kim,

C.-H. Sohn, C.-K. Park, and S.-H. Park

ABSTRACT

BACKGROUND AND PURPOSE: O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in primary and
recurrent glioblastoma may change during treatment. The purpose of this study was to correlate MGMT promoter methylation sta-
tus changes with DWI and DSC PWI features in patients with recurrent glioblastoma after standard treatment.

MATERIALS AND METHODS: Between January 2008 and November 2016, forty patients with histologically confirmed recurrent glioblas-
toma were enrolled. Patients were divided into 3 groups according to the MGMT promoter methylation status for the initial and recurrent
tumors: 2 groups whose MGMT promoter methylation status remained, group methylated (n¼ 13) or group unmethylated (n¼ 18), and 1
group whose MGMT promoter methylation status changed from methylated to unmethylated (n¼ 9). Normalized ADC and normalized rel-
ative CBV values were obtained from both the enhancing and nonenhancing regions, from which histogram parameters were calculated.
The ANOVA and the Kruskal-Wallis test followed by post hoc tests were performed to compare histogram parameters among the 3
groups. The t test and Mann-Whitney U test were used to compare parameters between group methylated and group methylated to
unmethylated. Receiver operating characteristic curve analysis was used to measure the predictive performance of the normalized relative
CBV values between the 2 groups.

RESULTS: Group methylated to unmethylated showed significantly higher means and 90th and 95th percentiles of the cumulative
normalized relative CBV values of the nonenhancing region of the initial tumor than group methylated and group unmethylated
(all P, .05). The mean normalized relative CBV value of the nonenhancing region of the initial tumor was the best predictor of
methylation status change (P, .001), with a sensitivity of 77.78% and specificity of 92.31% at a cutoff value of 2.594.

CONCLUSIONS:MGMT promoter methylation status might change in recurrent glioblastoma after standard treatment. The normal-
ized relative CBV values of the nonenhancing region at the first preoperative MR imaging were higher in the MGMT promoter
methylation change group from methylation to unmethylation in recurrent glioblastoma.

ABBREVIATIONS: CCRT ¼ concurrent chemoradiation therapy; EGFR ¼ epidermal growth factor receptor; GBM ¼ glioblastoma; IDH ¼ isocitrate dehydro-
genase; MGMT ¼ O6-methylguanine-DNA methyltransferase; MM = methylated; MU ¼ methylation to unmethylation; nADC ¼ normalized ADC; NER ¼ non-
enhancing region; nrCBV ¼ normalized relative CBV; rCBV ¼ relative CBV; TMZ ¼ temozolomide; UU ¼ unmethylated; VASARI ¼ Visually Accessible
Rembrandt Images; WHO ¼ World Health Organization

G lioblastoma (GBM) is the most common malignant brain tu-
mor and has a poor prognosis, with a median survival time of

12–15months, even after operation followed by concurrent chemo-
radiation therapy (CCRT) with adjuvant temozolomide (TMZ).1

Patients with GBM containing a methylated O6-methylguanine-
DNAmethyltransferase (MGMT) gene promoter are associated with
a favorable outcome after TMZ chemotherapy, whereas patients
with an unmethylated MGMT promoter do not have such a bene-
fit.2 TheMGMT gene encodes a DNA repair protein involved in the
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removal of TMZ-induced damaged DNA, and epigenetic silencing
by methylation of its promoter on the O6 position of guanine is
correlated with the cytotoxic effect of TMZ.3 MGMT promoter
methylation is reported to be present in 35%–75% of GBMs.4

Pseudoprogression after CCRT is more common in tumors with
MGMT promoter methylation in GBM, and methylation of the
MGMT promoter should be considered when interpreting follow-
up MR imaging.5

MGMT promoter methylation status in primary and recurrent
GBM may change during treatment.3,6,7 Some authors have sug-
gested that reduced MGMT promoter methylation in recurrent
GBM after TMZ treatment is one of the mechanisms for the ac-
quisition of therapeutic resistance; however, controversy remains
as to whether changes in the methylation status of the MGMT
promoter may be a prognostic factor for recurrent GBM.8,9

Many authors have reported the relationships of MGMT pro-
moter methylation status and imaging features, including CT,
DWI, DSC PWI, or DTI, in patients with high-grade glioma or
GBM before treatment.10-13 However, to our knowledge, there has
been no previous report regarding the correlation of DSC PWI
and DWI with changes in theMGMT promoter methylation status
in recurrent GBM. Therefore, the purpose of our study was to cor-
relate changes in the MGMT promoter methylation status with
DSC PWI and DWI features in patients with recurrent GBM after
standard treatment.

MATERIALS AND METHODS
Patients
This retrospective study was approved by the institutional review
board of Seoul National University Hospital. The requirement for
informed consent was waived. One hundred one patients with ana-
plastic astrocytoma or GBM who underwent surgical resection and
a second operation for suspected recurrence at our hospital between
January 2008 and November 2016 were screened for this study
from the neurosurgery data base. The inclusion criteria were as fol-
lows: 1) histopathologic diagnosis of anaplastic astrocytoma or
GBM based on the World Health Organization (WHO) 2016 crite-
ria at the initial operation; 2) histopathologic diagnosis of recurrent
GBM based on theWHO 2016 criteria at the second operation; and

3) a CCRT and adjuvant TMZ-based regimen between the opera-
tions. Sixty-one patients were excluded because of the following: 1)
unavailable pathologic specimen from either operation (n¼ 15); 2)
unavailable appropriate MR imaging from either operation
(n¼ 22); and 3) a third and fourth operation (n¼ 24).

Finally, 40 consecutive patients (20 men, 20 women; mean
age, 49.85 years; range, 21–74 years) were included in the present
study. We reviewed the clinical characteristics of each patient,
including age, sex, preoperative Karnofsky Performance Status
score at the first and second operation,MGMT promoter methyl-
ation status, isocitrate dehydrogenase (IDH) 1 or 2 mutation sta-
tus, epidermal growth factor receptor (EGFR) amplification
results at each operation, radiation dose, TMZ cycles, and treat-
ment options after the second operation from the electronic med-
ical records of our institution. These patients were divided into 3
groups according to the MGMT promoter methylation status of
the initial and recurrent tumors: unchanged MGMT promoter
methylation status, further divided into methylated (group MM,
n¼ 13) and unmethylated (group UU, n¼ 18), and changed
MGMT promoter methylation status from methylation to unme-
thylation (group MU, n¼ 9) (Fig 1). The extent of resection was
defined on the basis of immediate postoperative MR imaging
obtained within 24–72hours after the operation.14

Imaging Acquisition
A total of 80 MR images were obtained for 40 patients with 1.5T or
3T MR imaging scanners (3T Signa Excite [n ¼ 11], 1.5T Signa
HDxt [n¼ 17], and 1.5T Signa HDx [n¼ 1], GE Healthcare; 3T
Verio [n¼ 45], 3T Magnetom Trio [n¼ 3], 3T Magnetom Skyra
[n¼ 1], and 3T Biograph mMR [n¼ 1], Siemens; and 3T Ingenia
[n¼ 1], Philips Healthcare) with variable channel head coils (8-, 16-
, 32-, and 64-channel). Imaging sequences of the brain included
spin-echo or gradient-echo T1WI, FSE T2WI, FLAIR T2WI, SWI,
contrast-enhanced spin-echo or gradient-echo T1WI with gadobu-
trol (Gadovist; Bayer Schering Pharma) and DSC PWI. DWI was
performed with a single-shot spin-echo EPI sequence in the axial
plane with b-values of 0 and 1000 s/mm2. Using these data, we cal-
culated ADC maps on a voxel-by-voxel basis with the software that
was incorporated into the MR imaging unit. For DSC PWI, a sin-
gle-shot gradient-echo EPI sequence was used. Sixty images were
obtained in each section at intervals equal to the TR. After 4–5 time
points, a bolus of gadobutrol at a dose of 0.1mmol/kg of body
weight and a rate of 4mL/s was injected with an MR imaging–com-
patible power injector (Spectris; Medrad). The imaging parameters
of the MR imaging scanners are shown in the Online Supplemental
Data. Patients generally undergo MR imaging at presurgery, pre-
CCRT, immediate post-CCRT, and continued follow-up. The first
preoperative MR imaging for the initial tumor at presurgery and the
second preoperative MR imaging at recurrence were reviewed
(Online Supplemental Data).

Image Postprocessing and Analysis
Postprocessing and histogram analysis were performed
with dedicated software, NordicICE and Nordic TumorEX
(NordicNeuroLab), using the first preoperative and second pre-
operative MR images. Relative CBV (rCBV) was obtained with
an established tracer kinetic model for the first-pass data.15,16

FIG 1. Study design.
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Realignment for minimizing motion, g -variate fitting for reducing
the recirculation effect, and correction of the dynamic curve for
reducing the leakage effect were applied. To minimize variances in
the rCBV in an individual patient, we normalized the pixel-based
rCBV maps by dividing every rCBV value in a specific section by
the value in the unaffected contralateral deep white matter.17

Normalized ADC (nADC) values were obtained using the same
equation. Coregistrations between the contrast-enhanced T1WI
and the rCBV maps and between the contrast-enhanced T1WI
and the ADC maps were performed on the basis of geometric in-
formation stored in the respective datasets. The differences in sec-
tion thickness between images were corrected automatically by re-
slicing and coregistration, which were based on the underlying
structural images. Two neuroradiologists (H.J.C. and S.H.C. with 6
and 15 years of experience in neuroradiology, respectively) man-
ually defined the ROIs in consensus. To contain each complete
enhancing tumor and avoid macrovessels and cystic, hemorrhagic,
or necrotic portions, they drew ROIs on every tumor section on
contrast-enhanced T1WI using a semiautomatic method with sig-
nal intensity thresholds and seed-growing. To obtain exclusively
T2 hyperintense nonenhancing regions (NERs), we determined
exclusion ROIs (based on FLAIR and ROIs based on contrast-
enhanced T1WI) in the batch process.

After obtaining the total voxel values of the normalized rCBV
(nrCBV) and nADC of each enhancing region and the NER of
the tumor (Online Supplemental Data), we performed histogram
analysis as follows: The mean, 90th percentile, and 95th percentile
of nrCBV and the mean, 5th percentile, and 10th percentile of
nADC of histogram values were calculated. The ratios of the
nrCBV and nADC histogram values of the recurrent and initial
tumors were calculated by (nrCBVrecurrent/nrCBVinitial) and
(nADCrecurrent/ nADCinitial), respectively.

Selected conventional MR imaging features of the tumors were
recorded by a neuroradiologist (H.J.C.) according to the Visually
Accessible Rembandt Images (VASARI) feature scoring system for
human glioma.18 Preoperative tumor volumes based on contrast-
enhanced T1WI and FLAIR images were also measured.

Molecular/Genetic Analysis
Immunohistochemical staining was performed using a Bench
Mark XT (automated immunohistochemical slide staining sys-
tem; Roche Diagnostics). Immunohistochemistry was performed
on individual whole block sections using antibodies against the
IDH 1 R132H mutant protein (H09; Dianova, 1: 50). Sanger
sequencing was used to analyze the frequency of IDH 1 and 2
mutations. Labeled locus-specific EGFR SpectrumOrange/CEP7
SpectrumGreen dual color probes (Abbott Molecular) were used
to determine the status of the EGFR gene. MGMT-specific poly-
merase chain reaction using a methylation EZ Kit (https://www.
qiagen.com/us/listpages/ez1-kits/) was used to evaluate the meth-
ylation status of theMGMT promoter.

Statistical Analysis
Data for each parameter were assessed for normality with the
Kolmogorov-Smirnov test or Shapiro-Wilk normality test. The
ANOVA and the Kruskal-Wallis test followed by post hoc tests
were performed to compare histogram values among the 3

groups. Focusing on the initially methylated MGMT groups, we
used independent t tests and Mann-Whitney U tests to compare
group MM and group MU. Additionally, to evaluate the diagnos-
tic performance of the imaging parameters, we performed re-
ceiver operating characteristic curve analysis, and the area under
the curve was calculated to identify the optimal threshold for
maximizing sensitivity and specificity. Additionally, multivariable
logistic regression analysis was performed with statistically signif-
icant variables on univariable analysis. All statistical analyses
were performed using R statistical and computing software
(https://www.R-project.org) and MedCalc for Windows, Version
17.1 (MedCalc Software). A P value, .05 was considered statisti-
cally significant.

RESULTS
Clinical Characteristics
The clinical characteristics of the patients, including age, sex,
IDH mutation status, EGFR fluorescence in site hybridization
results (on primary and recurrent tumors), histopathology, surgi-
cal extent, first and second preoperative Karnofsky Performance
Status scores, postoperative treatment, and radiation dose after
the first operation were not significantly different among the 3
groups (Table 1).

Histogram Analysis
The mean, 90th percentile, and 95th percentile of the nrCBV val-
ues of the NER of the initial tumor were significantly higher in
group MU than in group MM and group UU (P ¼ 0.006, P ¼
0.001 and P, .001, respectively) (Online Supplemental Data and
Figs 2 and 3). The mean nADC of the NER of recurrent tumors
in group MU was significantly higher than that in group MM
and group UU (P, .001) (Online Supplemental Data). In addi-
tion, the ratio of the mean nADC values of the NER was also sig-
nificantly higher in group MU than in group MM and group UU
(P, .001) (Online Supplemental Data). There was no statistically
significant difference in the nrCBV or nADC values among the 3
groups in the enhancing region of the initial or recurrent tumors.
There was no significant difference in the nADC values in the
NER of the initial tumors among the 3 groups.

Imaging feature trends through time for each group are dem-
onstrated in the Online Supplemental Data.

Subgroup Analysis in Groups MM and MU
In the subgroup analysis, focusing on the initially methylated
MGMT promoter groups (group MM versus group MU), there
was no significant difference in the nADC or nrCBV values in
the enhancing region of the initial tumors (Online Supplemental
Data). In the NER of the initial tumors, the mean 90th percentile
and 95th percentile values of the nrCBV were higher in group
MM than in group MU (P¼ .002). For recurrent tumors, the
nrCBV values in the NER were not significantly different among
the 3 groups. In terms of the mean nADC value of the NER of
recurrent tumors, group MU showed significantly higher values
than group MM (P, .001).

Table 2 summarizes the diagnostic performance of the cumu-
lative histogram nrCBV and nADC values for discriminating sus-
tained MGMT methylation status (group MM) from changed
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MGMT methylation status (group MU) on the basis of the NER
of the initial tumor. The mean histogram value of the nrCBV in
the NER of the initial tumors showed the highest area under the
curve (0.889, P, .001; 95% CI, 0.682–0.982). Multivariable logis-
tic regression was performed with the statistically significant vari-
ables (mean, 90th percentile, and 95th percentile values of the
nrCBV of the NER of initial tumors and mean value of the nADC
of the enhancing region of recurrent tumors) on univariable anal-
ysis. Only the mean nrCBV value of the NER of the initial tumors
was significant (OR ¼ 9.53, P¼ 0.01; 95% CI, 1.575–57.703) in
multiple logistic regression analysis.

Conventional Imaging Features and Volume
Measurements among the 3 Groups
Several conventional imaging features based on the selected
VASARI scale showed no significant differences among
the 3 groups for initial and recurrent tumors (Online
Supplemental Data). Only the enhancing volumes of the
recurrent tumors of group UU were significantly larger than
those of group MU (P ¼ .03).

DISCUSSION
The results of the present study demonstrate that among
patients with recurrent GBM, the histogram parameters of the
nrCBV of the NER of tumors are higher for the group whose
MGMT promoter methylation status changed from methylated

Table 1: Clinical characteristics of the patientsa

Group MM (n= 13) Group UU (n= 18) Group MU (n= 9) Pb

Age (yr) 49.9 (SD, 14.3) 51.6 (SD, 14.5) 46.3 (SD, 11.1) .61
Sex .52
Female 7 (53.8%) 10 (55.6%) 3 (33.3%)
Male 6 (46.2%) 8 (44.4%) 6 (66.7%)

IDH 1 or 2 mutation .06
Negative 9 (90.0%) 14 (100.0%) 6 (66.7%)
Positive 1 (10.0%) 0 (0.0%) 3 (33.3%)

EGFR amplification: initial tumor .85
Negative 7 (53.8%) 10 (55.6%) 4 (44.4%)
Positive 6 (46.2%) 8 (44.4%) 5 (55.6%)

EGFR amplification: recurrent tumor .81
Negative 8 (66.7%) 10 (55.6%) 5 (55.6%)
Positive 4 (33.3%) 8 (44.4%) 4 (44.4%)

WHO grade: initial tumor .12
Grade III anaplastic astrocytoma 1 (7.7%) 0 (0.0%) 2 (22.2%)
Grade IV glioblastoma 12 (92.3%) 18 (100.0%) 7 (77.8%)

WHO grade: recurrent tumor
Grade IV 13 (100.0%) 18 (100.0%) 9 (100.0%)

Surgical extent .32
Total resection 11 (84.62%) 11 (61.11%) 7 (77.78%)
Subtotal resection 2 (15.4%) 0 (0.0%) 0 (0.0%)

1st preoperative KPS 100.0 (90.0–100.0) 92.5 (80.0–100.0) 100.0 (90.0–100.0) .41
2nd preoperative KPS 90.0 (80.0–100.0) 90.0 (70.0–100.0) 100.0 (90.0–100.0) .39
Postoperative treatment after 1st operation .42
CCRT/TMZ 11 (84.6%) 17 (94.5%) 8 (88.9%)
Hypo-CCRT/TMZ 2 (15.4%) 0 (0.0%) 0 (0.0%)
Hypo-CCRT 0 (0.0%) 1 (5.6%) 1 (11.1%)

Radiation dose (Gy) 61.0 (61.0–61.0) 61.0 (61.0–61.0) 61.0 (61.0–61.0) .69

Note:—KPS indicates Karnofsky Performance Status.
aData are number of patients, means [2 SDs] for normally distributed variables, or medians (interquartile ranges) for nonnormally distributed variables.
bP values were calculated using the Kruskal-Wallis test for nonparametric variables and the 1-way ANOVA for parametric variables.

FIG 2. Comparison of nrCBV histogram parameters across each group
of NER in the initial tumor. The mean, 90th percentile, and 95th percen-
tile of the nrCBV values of the NER of the initial tumor were signifi-
cantly higher in group MU than in group MM and group UU. Asterisks
represent statistically significant differences among groups. 90P indi-
cates the 90th percentile; 95P, the 95th percentile.
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to unmethylated than for the group whose MGMT promoter
methylation status was unchanged (either methylated or
unmethylated).

By repairing DNA damaged by alkylating agents such as TMZ,
the MGMT protein is thought to provide resistance against the cy-
totoxic effect of the anticancer drug.19 In addition, silencing the

Table 2: Diagnostic performance of the nrCBV values for discriminating unchanged MGMT methylation status (group MM) from
changed MGMT methylation status (group MU) on the basis of the NER of the initial tumor

Variable AUC Sensitivity (%) Specificity (%) Cutoff Standard Error 95% CI P
Initial tumor
nrCBV mean 0.889 77.78 92.31 .2.594 0.073 0.682–0.982 ,.0001
nrCBV 90P 0.846 88.89 76.92 .4.159 0.091 0.630–0.963 .0001
nrCBV 95P 0.855 66.67 92.31 .6.794 0.082 0.640–0.967 ,.0001

Note:—90P indicates 90th percentile; 95P, 95th percentile; AUC, area under the curve.

FIG 3. FLAIR images (A–C) and nrCBV maps (D–F) with corresponding cumulative histograms (G–I) for representative patients. A, D, G, A 34-year-
old woman in group MM. B, E, H, A 37-year-old woman in group UU. C, F, I, A 32-year-old man in group MU. The histogram values (mean, 90th
percentile, and 95th percentile) of the nrCBV in the NER of the tumors in group MU are higher than those in group UU or group MM.
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MGMT gene by promoter methylation achieves a therapeutic effect
by means of increasing sensitivity to alkylating agents.19 In routine
diagnostics, theMGMT promoter methylation status has predictive
and prognostic value.20 Many investigators have reported that
MGMT promoter methylation status may change from that of the
initial tumor when GBM recurs after treatment.3,6,7 This shift was
also observed in in vitro experiments with patient-derived GBM
cell lines.6,21 We found stability ofMGMT promoter methylation in
31 of 40 patients (77.5%) from the first to the second operation.
Nine of 40 (22.5%) patients showed changes in methylation status,
which was slightly higher than that reported in the latest meta-anal-
ysis (71/476, 14.9%).22 However, the range of changes in MGMT
promoter methylation is very wide, on the basis of the different
methods and cutoff values and the presence of selection bias.22

Meanwhile, conventional and advanced imaging features in
GBM based on MGMT promoter methylation have been studied
by many researchers. Previous studies revealed that tumors with
methylated MGMT promoters showed less aggressive imaging
features, including less edema, higher ADC, and low CBV val-
ues.10,23-25 However, conflicting results have also been reported,
indicating that the imaging features of tumors with methylated
MGMT promoters are not clearly distinguished from those with
an unmethylated status.10,13,26-28 As far as we know, there is no
previous work analyzing the imaging features associated with
MGMT promoter methylation changes after standard treatment.

In the present study, we focused on the imaging features of ini-
tial and recurrent tumors after treatment according to the change in
the MGMT promoter methylation status. There was no significant
difference in the nADC or nrCBV values among the groups in the
enhancing region of initial or recurrent tumors. However, in the
NER of initial tumors, the nrCBV values were higher in group MU
than in the other groups. The importance of the NER in GBM is
increasing in diagnostics, treatment, and prognosis.29-34 In a recent
study, the rCBV of the NER was a significant prognostic biomarker,
independent of morphologic features in GBM.35 In addition, the
volume transfer constant in the NER could be a potential prognostic
imaging biomarker in GBM.36,37 Blood perfusion in the tumor and
surrounding tissue may be related to the chemotherapeutic agent in
drug delivery.38 Yoo et al39 reported that an enhancing lesion with
a low volume transfer constant and ve (volume of extravascular
extracellular space) was more likely to progress because of its low
permeability or leakiness of the BBB, in which the delivery of TMZ
to viable tumor cells might be less effective during standard treat-
ment. A recent study about the combination of tumor perfusion
and MGMT promoter methylation indicated a potential interac-
tion effect in the treatment of recurrent GBM with TMZ.38 The
authors hypothesized that GBM contains immature vessels from
neoangiogenesis, which may influence drug delivery to the tumor
cells. Given that the therapeutic strategy of TMZ involves reduc-
tion of MGMT activity,40 it could be assumed that higher nrCBV
in the NER of the tumor could be related to depleting the methyl-
atedMGMT. Further studies are necessary to evaluate whether epi-
genic alterations during the clinical course of the disease are
related to the perfusion feature of the remaining tumor burden.

In recurrent GBM, treatment strategies are less established.41

Systemic chemotherapy is one option for treatment, but no che-
motherapeutic agents showed major differences in efficacy.

Nevertheless, TMZ rechallenge in patients withMGMT promoter
methylation is a reasonable option.38 In patients with an unme-
thylated MGMT promoter, another treatment option can be sug-
gested according to the results from the recurrent tumor.42 PWI
provides information on nrCBV in a noninvasive manner, and
we suggest that it should be considered in deciding the follow-up
duration or treatment option for patients with higher mean
nrCBVs in the NER of primary tumors with MGMT promoter
methylation. The clinical impact and imaging features should be
further investigated.

This study has some limitations, including its retrospective
nature and small cohort size. First, because different scanners
were used to acquire MR imaging data, there was inherent heter-
ogeneity in the raw data and postprocessing steps. To overcome
this limitation, we used normalized values for the CBV and ADC
values to standardize the data and postprocessing leakage correc-
tion to obtain the CBV values. Second, the evaluation of MGMT
promoter methylation with an MGMT-specific polymerase chain
reaction has some technical issues.43 Furthermore, hemimethyl-
ated promoters were not considered in the MGMT evaluation.43

Nevertheless, MGMT-specific polymerase chain reaction is a
widely accepted method with a significant correlation with
MGMT activity.9 Third, the results ofMGMT promoter methyla-
tion status were tested in surgical specimens obtained primarily
from enhancing tumors. There have been reports about differen-
ces in MGMT promoter methylation and expression, depending
on the sampling area in the GBM.44 However, MGMT promoter
methylation is usually seen as homogeneous within the tumor.45

We did not examine serial sections of the tumor, hypothesizing
that MGMT promoter methylation in the specimens was homo-
geneous. Further studies are needed to address the issue of intra-
tumoral heterogeneity in MGMT promoter methylation. Fourth,
3 anaplastic astrocytomas were included in the first operation.
The inclusion criteria were patients with recurrent glioblastoma
who had primarily surgery and TMZ-based CCRT followed by
adjuvant TMZ. Therefore, 3 anaplastic astrocytomas were
included in the first operation. We re-tested after removal of the
3 cases and found that there was no significant change in the
results (Online Supplemental Data).

CONCLUSIONS
MGMT promoter methylation status might change in recurrent
GBM after standard treatment. The nrCBV values of the NER at
the first preoperative MR imaging were higher in theMGMT pro-
moter methylation change group from methylation to unmethy-
lation in recurrent GBM.
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