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ORIGINAL RESEARCH
FUNCTIONAL

Functional MRI Shows Altered Deactivation and a
Corresponding Decrease in Functional Connectivity of the

Default Mode Network in Patients with Gliomas
Y.M. Maniar, K.K. Peck, M. Jenabi, M. Gene, and A.I. Holodny

ABSTRACT

BACKGROUND AND PURPOSE: The default mode network normally decreases in activity during externally directed tasks. Although
default mode network connectivity is disrupted in numerous brain pathologies, default mode network deactivation has not been
studied in patients with brain tumors. We investigated default mode network deactivation with language task–based fMRI by meas-
uring the anticorrelation of a critical default mode network node, the posterior cingulate cortex, in patients with gliomas and con-
trols; furthermore, we examined default mode network functional connectivity in these patients with task-based and resting-state
fMRI.

MATERIALS AND METHODS: In 10 healthy controls and 30 patients with gliomas, the posterior cingulate cortex was identified on
task-based fMRI and was used as an ROI to create connectivity maps from task-based and resting-state fMRI data. We compared
the average correlation in each default mode network region between patients and controls for each correlation map and strati-
fied patients by tumor location, hemisphere, and grade.

RESULTS: Patients with gliomas (P ¼ .001) and, in particular, patients with tumors near the posterior default mode network
(P, .001) showed less posterior cingulate cortex anticorrelation in task-based fMRI than controls. Patients with both left- and right-
hemisphere tumors, as well as those with grade IV tumors, showed significantly lower posterior cingulate cortex anticorrelation
than controls (P = .02, .03, and ,.001, respectively). Functional connectivity in each default mode network region was not signifi-
cantly different between task-based and resting-state maps.

CONCLUSIONS: Task-based fMRI showed impaired deactivation of the default mode network in patients with gliomas. The func-
tional connectivity of the default mode network in both task-based and resting-state fMRI in patients with gliomas using the pos-
terior cingulate cortex identified in task-based fMRI as an ROI for seed-based correlation analysis has strong overlap.

ABBREVIATIONS: BOLD ¼ blood oxygen level–dependent; DMN ¼ default mode network; FC ¼ functional connectivity; IPL ¼ inferior parietal lobule; LIPL
¼ left inferior parietal lobule; mPFC ¼ medial prefrontal cortex; PCC ¼ posterior cingulate cortex; RIPL ¼ right inferior parietal lobule; rs-fMRI ¼ resting-state
fMRI; tb-fMRI ¼ task-based fMRI

The default mode network (DMN) is a functionally connected
brain network1,2 that demonstrates deactivation during tasks

that require external attention relative to nontask conditions.3-5

The functions of the DMN appear to be central in spontaneous

cognition,6 stimulus-independent thoughts,7 and self-referential
mental activity.8 DMN deactivation has been correlated with
functions such as memory-encoding9 and goal-directed external
task performance.10

The DMN has been studied extensively using blood oxygen
level–dependent (BOLD) fMRI, both in healthy volunteers and in
patients with a variety of neurologic and psychiatric conditions.
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Because DMN deactivation is known to be important for cogni-
tive function,10 exploring the impact of brain tumors on DMN
deactivation could help elucidate the underpinnings of acceler-
ated cognitive decline in patients with brain tumors.11 Subclinical
cognitive decline in middle-aged healthy men has been associated
with decreased deactivation of the posterior DMN during a vis-
ual-motor task paradigm.12 Decreased DMN deactivation has
also been demonstrated in patients with schizophrenia during a
semantic and perceptual encoding task paradigm,13 in patients
with Alzheimer disease during a face-name recognition para-
digm,14 and in patients with stroke during a motor-task para-
digm.15 However, task-induced deactivation of the DMN has not
yet been studied with fMRI in patients with gliomas.

Functional connectivity (FC) refers to the degree of the corre-
lation of simultaneous activity of disparate brain regions, either
during a task or at rest, as measured by fMRI.16 Disruptions in
the FC of the DMN have been associated with cognitive impair-
ment in patients with focal lesions, including patients with
stroke17 and brain tumors,18-20 as well as in patients with au-
tism,21 schizophrenia,22 and neurodegenerative diseases such as
Alzheimer disease23 and Parkinson disease.24 However, while
decreases in the FC of the DMN have been found in patients with
brain tumors, the data are varied regarding the impact of tumor
location, grade, and hemisphere.18-20 Additionally, there are no
data comparing the FC of the DMN using both task-based fMRI
(tb-fMRI) and resting-state fMRI (rs-fMRI) in the same cohort of
patients with gliomas.

Thus, the purpose of this study was to investigate the effect of
gliomas on DMN deactivation using tb-fMRI with a language
task paradigm and DMN FC using a seed-based correlation anal-
ysis in both tb-fMRI and rs-fMRI. To measure DMN deactivation
during tb-fMRI, we recorded the degree of negative correlation
(anticorrelation) in the posterior cingulate cortex (PCC), a major
node of the DMN, relative to the language task waveform in both
healthy volunteers and patients with gliomas. Then, we measured
the FC to the PCC of the other major nodes of the DMN: the

medial prefrontal cortex (mPFC) and the left and right inferior
parietal lobules (LIPL and RIPL).3 We also compared these 2 dif-
ferent methods of measuring tumor-induced functional changes
in the DMN. We hypothesized that DMN regions impacted by
tumors would demonstrate less anticorrelation in tb-fMRI and a
correspondingly reduced resting-state connectivity compared
with healthy volunteers.

MATERIALS AND METHODS
Subject Selection
This retrospective study was approved by the institutional review
board of Memorial Sloan Kettering Cancer Center and was con-
ducted in compliance with the Health Insurance Portability and
Accountability Act. We analyzed the fMRI scans of 10 healthy
controls and 30 patients diagnosed with gliomas who underwent
both language tb-fMRI and rs-fMRI in the same sitting between
2017 and 2018. The control subjects gave consent for a funded
study. Patient data were all acquired for the purpose of the pre-
surgical planning protocol in addition to routine MR imaging. A
summary of patient clinical data, including tumor type, location,
and grade, is shown in the Table.

MR Imaging Acquisition
Both tb-fMRI and rs-fMRI were performed using a 3T scanner
(Discovery 750W, GE Healthcare) with 24-channel head coils.
fMRI was acquired with single-shot EPI (TR/TE ¼ 2500/32 ms,
section thickness ¼ 4mm, matrix ¼ 64� 64, FOV ¼ 240mm,
scanning duration ¼ 6minutes 55 seconds). fMRI coverage match-
ing FLAIR parameters (TR/TE= 10,000/106ms, TI ¼ 220ms, ma-
trix ¼ 256� 256), T1 postcontrast (TR/TE ¼ 600/20ms,
matrix ¼ 256� 256), and 3D T1-weighted anatomic images using
a spoiled gradient recalled-echo sequence (TR/TE ¼ 22/4ms,
matrix ¼ 256� 256, section thickness ¼ 1mm) were acquired as
routine clinical scans.

Tb-fMRI and rs-fMRI Paradigms
The fMRI examination consisted of 8 cycles of alternating task
(20 seconds) and rest periods (30 seconds). During the phonemic
fluency task, subjects were presented with different letters and
were asked to silently generate words starting with that letter.
During the rs-fMRI scan, subjects were instructed to relax, fixate
on a central cross, and try not to think during the scan. Brain ac-
tivity and head motion were monitored in real-time during the
scan using BrainWave software (Medical Numerics).

fMRI Data Preprocessing
Images were preprocessed and analyzed with the Analysis of
Functional Neuro Images (AFNI; http://afni.nimh.nih.gov/afni)
software.25 Images were assessed for noise and artifacts. To cor-
rect for head motion, we performed 3D volume registration.
Spatial smoothing using a Gaussian filter with 6-mm full width at
half maximum was applied to suppress noise and increase the
SNR. In addition, rs-fMRI data were filtered (range, 0.01–
0.08Hz) to extract functional integration processes and remove
respiratory and cardiac noise during rest.

Clinical data and tumor pathology
Characteristic Patients (n= 30)

Age (mean, range) (yr) 46.1, 19–79
Sex
Male 19
Female 11

Handedness
Right 25
Left 5

Tumor hemisphere
Right 7
Left 23

Tumor location
Posterior DMN 14
Anterior DMN 8
Outside DMN 8

Tumor grade
II 11 (5 Astrocytomas, 6 oligodendrogliomas)
III 7 (3 Anaplastic astrocytomas, 3 anaplastic

oligodendrogliomas, 1 anaplastic
ganglioglioma)

IV 12 Glioblastomas
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DMN Deactivation and FC Analysis
We measured the DMN with 3 different methods in controls and
patients: language-task-based deactivation, functional connectiv-
ity using the task-based fMRI map, and functional connectivity
using the resting-state fMRI map.

1. Deactivation: To assess DMN deactivation in tb-fMRI, we per-
formed a seed-based correlation analysis based on the func-
tional ROI for each subject. For each subject, 3 correlation
maps were sequentially generated. First, a correlation map was
created from the BOLD response to the word-generation task,
depicting both positively correlated and anticorrelated areas
(tb-fMRI map). The region of the PCC that was anticorrelated
in the tb-fMRI map was then selected as an ROI. A correlation
threshold with an absolute value of 0.4 (P , .0001, and Q ¼
.01) was set to minimize the possible false-positive rate. All anti-
correlated voxels of less than �0.4 at the level of PCC on the
axial view of the functional image were used to generate the
PCC ROI.

2. Functional connectivity, task-based: To assess DMN FC, we
used this PCC ROI to create a second correlation map from
the same task-based functional data (PCC ROI task-based
map), to measure the correlation of the other DMN regions
(mPFC, LIPL, and RIPL) with the PCC.

3. Functional connectivity, resting-state: The same PCC ROI
was transferred to the rs-fMRI data and used to create a third
correlation map (PCC ROI resting-state map), again to mea-
sure the correlation of the other DMN regions with the PCC.

For quantitative analysis, the number of voxels, average corre-
lation value, maximum correlation value, and correlation thresh-
old were recorded from each DMN region.

For group analysis of controls, the correlation maps generated
from PCC ROIs in tb-fMRI and rs-fMRI were normalized to the
Montreal Neurological Institute 152 T1_2-mm template and aver-
aged over the subjects using the FMRIB Software Library (FSL;
http://www.fmrib.ox.ac.uk/fsl)26 to create the mean correlation map.
The final map was thresholded at t. 6 (P, .001) and overlayered
on the Montreal Neurological Institute 15 T1_2-mm template
image. Patient data were then separated by tumor location into 3
groups for analysis: tumors near or invading the posterior DMN (n
¼ 14), tumors near or invading the anterior DMN (n ¼ 8), and
tumors outside the DMN (n¼ 8), as indicated by abnormal findings
on FLAIR. The tumor-location group classification was supervised
by a Certificate of Added Qualification–certified neuroradiologist
with 20years’ experience. DMN symmetry was measured with the
inferior parietal lobe (IPL) ratio, which was calculated by dividing
the correlation of the IPL on the nontumor side by the correlation
of the IPL on the tumor side for both tb-fMRI and rs-fMRI. In con-
trols, because the DMN is symmetric, the ratio was arbitrarily calcu-
lated as the LIPL correlation divided by the RIPL correlation. Patient
data were also separated by tumor hemisphere (right-sided¼ 7, left-
sided¼ 23) and tumor grade (II¼ 11, III/IV¼ 19).

Statistical Analysis
The 2-tailed Mann-Whitney U test was used to assess the impact of
tumor location, tumor hemisphere, and tumor grade on the average
correlation value of the PCC in the tb-fMRI map and of the

correlation values of the mPFC, LIPL, and RIPL to the PCC in the
PCC ROI task-based and resting-state maps. The Benjamini-
Hochberg procedure (Benjamini-Hochberg critical value = i/m� Q,
where i ¼ rank order, m ¼ total number of tests, and Q ¼ FDR
¼0.05) was used to adjust the P value and control the false discovery
rate (FDR). For analyses of tumor location and tumor grade, we
usedm¼ 3 because there were 3 control-to-patient comparisons for
deactivation and FC in each brain region in tb-fMRI and in rs-
fMRI. For analysis of tumor hemisphere, there were 2 patient-to-
control comparisons; consequently,m¼ 2. P values lower than their
respective critical values were considered significant.

RESULTS
DMN Deactivation and the FC of Patients versus Controls
While performing the language task in tb-fMRI, all patients and
controls demonstrated anticorrelation in the PCC. Healthy con-
trols demonstrated anticorrelation with the language task in the 4
major DMN regions (PCC, mPFC, LIPL, and RIPL) (Fig 1A), as
well as a baseline level of DMN FC on a mean PCC ROI task-
based map (Fig 1B).

DMN anticorrelation, FC in tb-fMRI, and FC in rs-fMRI were
all similarly disrupted in patients with gliomas compared with
controls. Compared with the group of controls (n ¼ 10), the
group of patients (n ¼ 30) showed significantly less anticorrela-
tion in the PCC in tb-fMRI (P¼ .001). Patients also showed sig-
nificantly lower FC of the other 3 DMN regions to the PCC
(mPFC, P¼ .004; LIPL, P¼ .04; RIPL, P¼ .048) in tb-fMRI.
While undergoing rs-fMRI, patients also showed lower FC to the
PCC compared with controls, but the difference was only signifi-
cant for the mPFC (P¼ .02).

Effect of Tumor Location on DMN Deactivation and FC
Figure 2 shows the fMRI maps of 3 patients, 1 from each tumor
location group. Patient A, who had a tumor infiltrating the RIPL,

FIG 1. Group correlation maps for controls (n = 10). A, Group analysis
map created from task-paradigm correlation maps (2 axial views). A
positive correlation (orange) in the Broca area can be seen in the left
hemisphere. A negative correlation (blue) in the DMN is also apparent.
The 4 major DMN regions (PCC, mPFC, LIPL, and RIPL) are clearly anti-
correlated, and the left-hemisphere Broca area is positively corre-
lated with the language task. B, Mean group analysis map (t = 6,
P, .001) created from PCC ROI task-based correlation maps. DMN
connectivity is apparent (orange). As expected, the regions of strong-
est connectivity to the PCC are the other major DMN regions. Thus,
this figure illustrates a baseline level of DMN FC in healthy controls
that can be visualized using the tb-fMRI correlation map with a PCC
ROI.
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had less anticorrelation of the RIPL (compared with the LIPL) in
both tb-fMRI and rs-fMRI. Patient A also showed less FC of the
RIPL (compared with the LIPL) to the PCC in both tb-fMRI and
rs-fMRI. Patient B had a tumor near the mPFC in the left hemi-
sphere, and patient C had a tumor outside the DMN in the left
hemisphere. Notably, across all patients including these 3, no sig-
nificant differences were found in terms of FC of the mPFC,
LIPL, and RIPL to the PCC between tb-fMRI and rs-fMRI. In
addition, the ratio of FC values in each DMN region in tb-
fMRI versus rs-fMRI was not significantly different between
controls and patients.

When we stratified the data by tumor location (Fig 3A, -B), only
patients with posterior DMN tumors showed significantly lower

anticorrelation in the PCC compared with controls (P, .001) in
tb-fMRI. In terms of DMN FC, significantly lower FC of the mPFC
to the PCC was found in patients with anterior DMN tumors in tb-

fMRI (P ¼ .001) and rs-fMRI (P ¼ .01). Patients with posterior

DMN tumors also demonstrated signif-

icantly lower FC to the LIPL in tb-fMRI

(P¼ .02) and rs-fMRI (P¼ .02).
The IPL ratio of patients with poste-

rior DMN tumors was significantly
greater than that of controls (tb-fMRI,
P ¼ .006; rs-fMRI, P ¼ .008) (Fig 4).
The IPL ratio of patients with anterior
DMN tumors was significantly greater
than that of controls in rs-fMRI (P ¼
.004), but not in tb-fMRI. Patients with
tumors outside the DMN showed no
significant differences from controls.

Effect of Tumor Hemisphere on
DMN Deactivation and FC
Significantly lower PCC anticorr-
elation was found for patients with
both left tumors (P¼ .003) and right
tumors (P¼ .015) compared with
controls (Fig 3C, -D). The FC of the
mPFC to the PCC was significantly
lower for patients with both left
(P¼ .02) and right (P¼ .03) tumors
in tb-fMRI, but not in rs-fMRI. No
hemispheric differences in PCC anti-
correlation or FC were found when
directly comparing patients with left
tumors with those with right tumors.

Effect of Tumor Grade on DMN
Deactivation and FC
After we stratified by tumor grade
(Fig 3E, -F), only patients with grade
IV tumors showed significantly lower
PCC anticorrelation (P, .001) com-
pared with controls. Only patients
with grade III tumors showed signifi-
cantly lower mPFC connectivity in
tb-fMRI (P¼ .005) compared with

controls, while rs-fMRI revealed no significant differences in FC
compared with controls. No significant differences in PCC anti-
correlation or mPFC connectivity were found when directly
comparing grade II with high-grade (grades III and IV) tumors.

DISCUSSION
Our study has 2 major findings: First, we showed that patients
with gliomas have significantly less anticorrelation in the
PCC on tb-fMRI than healthy controls. Second, our study
successfully used the PCC identified in tb-fMRI as an ROI for
seed-based correlation analysis to examine the FC of the
DMN in both task-based and resting-state fMRI in patients
with gliomas. We found strong overlap between the task-
based and resting-state maps.

We found significantly lower anticorrelation in the PCC
as well as significantly lower FC of the 3 regions of the DMN
(mPFC, LIPL, and RIPL) to the PCC in patients compared

FIG 2. Examples of correlation maps in an axial view for patients with gliomas in different loca-
tions (patient A, posterior DMN; patient B, anterior DMN; patient C, outside DMN). The first row
of images shows task-paradigm correlation maps. Blue represents areas of negative correlation,
and orange represents areas of positive correlation to the language task. The second row of
images illustrates the PCC ROI task-based fMRI correlation maps. Red and yellow represent areas
of increased connectivity to the PCC ROI. The third row of images illustrates PCC ROI resting-
state fMRI correlation maps. Patient A has a right-hemisphere glioblastoma invading the posterior
DMN. Patient B has a left-hemisphere anaplastic oligodendroglioma invading the anterior DMN.
Patient C has a left-hemisphere oligodendroglioma outside the DMN. The first 2 rows demon-
strate a decreased anticorrelation in the DMN in the area of the tumor that corresponds to a
decrease in both resting-state and task-based fMRI connectivity.
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with controls during task-based fMRI. The decrease in anti-
correlation was more pronounced for patients with tumors
in or near the posterior regions of the DMN (including the
PCC, LIPL, and RIPL). When patients were stratified by tu-
mor hemisphere or tumor grade, both patients with left- and
right-hemisphere tumors as well as patients with grade IV
tumors demonstrated decreased anticorrelation in the PCC
compared with controls. No significant differences were
found for either anticorrelation in the PCC or FC when com-
paring left- with right-hemisphere tumors or grade II tumors
with high-grade (grades III and IV) tumors. Due to the rela-
tively small sample size of the overall study, especially of
each subgroup, and the statistical adjustments for multiple

comparisons, underpowering may have contributed to these
negative results.

While DMN deactivation has not been previously studied in
patients with brain tumors, alterations in DMN connectivity have
been shown. Esposito et al18 used independent component analy-
sis to show globally reduced DMN connectivity in patients with
left-hemisphere gliomas during a language task. Our results not
only affirm their findings but also show the same results in right-
hemisphere gliomas. Furthermore, we showed decreased DMN
FC for right- and left-hemisphere gliomas in the resting state.

The PCC has been described as a critical node of the DMN.17

The location-dependent change in PCC anticorrelation indicates
that tumors near or directly infiltrating the posterior DMN

FIG 3. Box-and-whisker plots illustrating the distribution of average correlation values in the term of task-induced deactivation of PCC region
of the DMN for controls and patients by tumor location (A), tumor hemisphere (C), and tumor grade (E) and average correlation values of the
mPFC region of the DMN for controls and patients in both the PCC ROI task-based correlation map and the PCC ROI resting-state correlation
map by tumor location (B), tumor hemisphere (D), and tumor grade (F) .
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regions have a greater impact on PCC anticorrelation. The physi-
cal proximity of these tumors to the PCC is likely part of the ex-
planation. Anterior DMN tumors showed a smaller difference in
PCC anticorrelation than tumors outside the DMN; overall,
tumors outside the DMN were closer in distance to the PCC than
anterior DMN tumors.

Meanwhile, the location-dependent asymmetry of IPL con-
nectivity means that posterior DMN tumors affect the ipsilateral
IPL more than the contralateral IPL; therefore, these tumors have
a greater impact on ipsilateral connectivity. Again, this may be
largely due to proximity, given that many of the posterior DMN
tumors were near the ipsilateral IPL.

Local tumor effects, such as parenchymal infiltration, local ne-
crosis, and tumor neoangiogenesis, may result in neurovascular
uncoupling. Neurovascular uncoupling has been shown to cause
false-negative results in both tb-fMRI and rs-fMRI data.27-38 It
remains unclear whether our findings are due to a global decrease
in DMN function, neurovascular uncoupling, or some combina-
tion thereof. Our data showed—in patients with both left- and
right-hemisphere tumors, compared with controls—lower PCC
anticorrelation and lower FC of the mPFC to the PCC in tb-
fMRI. In contrast, a rs-fMRI study by Ghumman et al20 found
decreased overall DMN connectivity in patients with left-hemi-
sphere cerebral tumors, but not in patients with right-hemisphere
tumors. Their study included gliomas along with other tumor
pathologies such as meningiomas and metastases, which may
impact DMN connectivity differently. However, Ghumman et
al20 did not find a significant difference among histologic types of
tumor. Again, we studied connectivity of individual regions to
the PCC, not overall network connectivity, but this difference
likely does not explain the discrepancy in our findings.

In another study, Harris et al19 showed that brain tumors of
higher grades corresponded to a greater reduction in global
DMN connectivity in pseudo-resting-state fMRI. However, after
false discovery rate correction, our data did not corroborate this

finding, with lower FC found only in
grade III tumors between the PCC
and mPFC. An important difference
is that their study also measured
global DMN connectivity, while our
study directly measured connectiv-
ity between individual regions and
the PCC. Additionally, their data were
acquired using pseudo-resting-state fMRI,
which analyzes residual tb-fMRI signals af-
ter taking into account activation due to
the task. On the other hand, 1 possible ex-
planation for our negative results is under-
powering due to false discovery rate
correction for multiple comparisons and a
smaller sample size. Esposito et al18

actually found increased correspondence
in the global DMN spatial pattern of con-
trols and patients with high-grade gliomas
compared with those with low-grade glio-
mas; they attributed this finding to the
slow-growing nature of low-grade glio-

mas, which allows time for network reorganization due to neuronal
plasticity.

The decreased DMN deactivation and connectivity have clini-
cal implications for cognitive decline in patients with brain
tumors. Deficits in behavioral and cognitive function in patients
with tumors in or near the posterior DMN may be explained by
the location-dependent effects of brain tumors. Deficits in activ-
ities such as memory-encoding and external task performance
may be at least partially due to the disruption of DMN deactiva-
tion and connectivity by the tumor. Because our patients’ scans
were all preoperative, comparison with postoperative fMRI could
assess whether resection or debulking is associated with restora-
tion of DMN deactivation and FC.

Our study was limited by a number of factors. Although ROIs
were systematically placed in each patient by 1 investigator, they
were selected manually, which creates the possibility of human
variation in ROI placement. At the same time, manual selection
allowed us to better account for small variations in the location of
positive or negative correlations in each region, especially because
tumors and their accompanying edema often induce mass effect
that distorts regional anatomy. Another limitation is the variation
in the precise location of each tumor; the reduced number of
patients with tumors in each DMN region necessitated grouping
tumors in the PCC or bilateral IPLs into the broader “posterior
DMN” group. Each tumor that was classified as in or near the an-
terior or posterior DMN was determined by the investigators vis-
ually, and the amount of overlap between the DMN region and
the tumor or surrounding edema was variable. Limited patient
volume also prohibited further analysis of tumors “outside the
DMN” by a more specific location.

CONCLUSIONS
Task-based fMRI shows impaired deactivation in patients with
gliomas. In particular, patients with posterior DMN tumors and
grade IV tumors showed decreased anticorrelation in the PCC.

FIG 4. Box-and-whisker plots illustrating the ratio of the average correlation values of nontu-
mor/tumor IPL versus tumor location for patients and of left/right IPL versus tumor location for
controls in task-based fMRI (A) and resting-state fMRI (B).
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Our study also, for the first time, directly examined the FC of the
DMN in both task-based and resting-state fMRI in patients with
gliomas, using the PCC identified in tb-fMRI as an ROI for seed-
based correlation analysis. DMN maps created from a PCC ROI
using the tb-fMRI and rs-fMRI waveforms are strongly correlated.
Hence, in DMN regions impacted by tumors, the decrease in anti-
correlation in tb-fMRI corresponds to a reduced resting-state con-
nectivity compared with healthy volunteers.
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