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ORIGINAL RESEARCH
ADULT BRAIN

Quantifying T2-FLAIR Mismatch Using Geographically
Weighted Regression and Predicting Molecular Status in

Lower-Grade Gliomas
S. Mohammed, V. Ravikumar, E. Warner, S.H. Patel, S. Bakas, A. Rao, and R. Jain

ABSTRACT

BACKGROUND AND PURPOSE: The T2-FLAIR mismatch sign is a validated imaging sign of isocitrate dehydrogenase–mutant 1p/19q non-
codeleted gliomas. It is identified by radiologists through visual inspection of preoperative MR imaging scans and has been shown to
identify isocitrate dehydrogenase–mutant 1p/19q noncodeleted gliomas with a high positive predictive value. We have developed an
approach to quantify the T2-FLAIR mismatch signature and use it to predict the molecular status of lower-grade gliomas.

MATERIALS AND METHODS: We used multiparametric MR imaging scans and segmentation labels of 108 preoperative lower-grade
glioma tumors from The Cancer Imaging Archive. Clinical information and T2-FLAIR mismatch sign labels were obtained from sup-
plementary material of relevant publications. We adopted an objective analytic approach to estimate this sign through a geograph-
ically weighted regression and used the residuals for each case to construct a probability density function (serving as a residual
signature). These functions were then analyzed using an appropriate statistical framework.

RESULTS: We observed statistically significant (P value ¼ .05) differences between the averages of residual signatures for an isoci-
trate dehydrogenase–mutant 1p/19q noncodeleted class of tumors versus other categories. Our classifier predicts these cases with
area under the curve of 0.98 and high specificity and sensitivity. It also predicts the T2-FLAIR mismatch sign within these cases
with an under the curve of 0.93.

CONCLUSIONS: On the basis of this retrospective study, we show that geographically weighted regression–based residual signa-
tures are highly informative of the T2-FLAIR mismatch sign and can identify isocitrate dehydrogenase–mutation and 1p/19q codele-
tion status with high predictive power. The utility of the proposed quantification of the T2-FLAIR mismatch sign can be potentially
validated through a prospective multi-institutional study.

ABBREVIATIONS: GWR ¼ geographically weighted regression; IDH ¼ isocitrate dehydrogenase; LGG ¼ lower-grade glioma; PDF ¼ probability density function

D iffuse gliomas are rare-but-life-threatening neoplasms char-
acterized by infiltrative tumor growth in the brain. They

have traditionally been classified according to phenotypic sub-
types, including astrocytomas, oligodendrogliomas, and glioblas-
tomas.1,2 The incidence of gliomas has steadily increased with
time, with currently 5.9 cases per 100,000.3 Among diffuse glio-
mas, the World Health Organization characterizes low-grade

gliomas as grade II tumors, while grade III are anaplastic tumors
and grade IV are glioblastomas.4 However, research based on the
The Cancer Genome Atlas often groups tumors from grades II
and III together as lower-grade to distinguish them from the phe-
notypically distinct grade IV glioblastomas.5-7
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Recent genomic studies have resulted in lower-grade gliomas
(LGGs) being categorized on the basis of molecular biomarkers
that are associated with differing prognoses and responses to
treatment.1,6 LGGs are currently classified by the presence/ab-
sence of a mutation in the isocitrate dehydrogenase (IDH)1/IDH2
genes, as well as the presence/absence of codeletion of the 1p and
19q chromosomes (1p/19q).1,4,6 IDH mutations are known to
confer improved survival in patients with LGG and potentially
better treatment outcomes.1,6 The presence of the 1p/19q codele-
tion also indicates better survival outcomes as well as increased
sensitivity to specific forms of treatment.1,6

An imaging phenotype known as the T2-FLAIR mismatch
sign in LGGs has drawn interest as a robust diagnostic tool to
identify a specific molecular subtype of LGGs, namely IDH-mu-
tant 1p/19q noncodeleted astrocytomas.6-8 This sign is character-
ized by the presence of complete/near-complete hyperintense
signal on T2 TSE (referred to as T2 from here on) and a relatively
hypointense signal on T2-weighted FLAIR (referred to as FLAIR
from here on) except for a hyperintense peripheral rim. The T2-
FLAIR mismatch sign was initially reported by Patel et al6 to be a
highly specific marker for IDH-mutant, noncodeleted gliomas
with a positive predictive value of 100% in both the test and vali-
dation sets. These results have been validated by multiple
research groups with high specificity,7,9-14 and the T2-FLAIR
mismatch sign is now considered a useful and robust imaging
sign.8 However, we emphasize that the 100% positive predictive
value studies were all based on retrospective studies,6,7,9-14 and
the results cannot be directly assumed for a general population.
For example, Johnson et al12 found that T2-FLAIR mismatch
elicits false-positives for IDH-mutant, noncodeleted astrocytomas
in pediatric glioma cases. Additionally, as discussed in Foltyn et
al,14 looser definitions of “mismatch” that do not require com-
plete or near-complete hypointense T2 signal and a hyperintense
peripheral rim on FLAIR may also elicit false-positives.

Analyses of distinct histopathologic and radiologic features of
the brain have been conducted to better understand the physio-
logic context of the T2-FLAIR mismatch. For example, ADC val-
ues computed from diffusion-weighted images were shown to
identify IDH-mutant noncodeleted LGGs with high specificity,
capturing cases in which a T2-FLAIR mismatch was not appa-
rent, in addition to those in which a mismatch was present.15

This study suggests that T2-FLAIR mismatch is also involved in
the pathways that enable the IDH-mutated noncodeleted gliomas
to exhibit increased ADC values compared with other subtypes.15

Aliotta et al15 added that the T2-FLAIR mismatch has substan-
tially higher ADC values and lower relative CBV values compared
with other IDH-mutant noncodeleted cases that do not have a mis-
match. These values are considered well-known prognostic factors
for glioma cases, and ADC has been implicated as a possible proxy
for differences in tumor microenvironment.15 Therefore, although
specific molecular pathway information must be investigated to
better understand the mechanism for the T2-FLAIR mismatch,
there is marked evidence that a mismatch emerges as a special case
of IDH mutation and 1p19/q noncodeletion and confers possible
tumor differences, which could have potential prognostic or pre-
dictive implications in the future. Our discussion of ADC here is to
provide some background on the biologic motivations of our

work, and we would like to emphasize that our proposed approach
uses only T2 and FLAIR imaging sequences.

Although several studies analyzing the T2-FLAIR mismatch are
available, to our knowledge, this is a first attempt to develop a statisti-
cal framework to detect the T2-FLAIR mismatch from MR images
alone. We hypothesized that a statistical framework should be able to
discriminate among different molecular subtypes of LGGs, including
between IDH-mutant tumors with and without 1p/19q codeletion as
well as the presence of a T2-FLAIRmismatch, even when the charac-
teristic peripheral ring is not visible. Such a framework should allow
the robust analysis of image characteristics that confer discriminative
power that is not easily achieved by human reviewers.

Our proposed statistical framework builds a quantification of
the T2-FLAIR mismatch using patients’ MRIs to build a classifier
for tumor subtypes on the basis of features extracted from the mis-
match quantification. The proposed workflow of our approach is
provided in Fig 1. We use a spatial analysis technique called geo-
graphically weighted regression (GWR)16 in combination with tools
from geometric functional data analysis to quantify the mismatch
between T2 and FLAIR. We refer to our quantification as a residual
signature to differentiate it from T2-FLAIR mismatch. Using
appropriate statistical frameworks (further details in the Materials
and Methods section and the Online Supplemental Data), we
devised permutation-based hypothesis tests to investigate differen-
ces among groups of residual signatures (eg, IDH-mutated versus
IDH wild-type) and built classification models to predict the molec-
ular status of the subjects. This framework of permutation tests and
classification models has also been successfully used for the analysis
of imaging data in the context of diabetic retinopathy.17,18

MATERIALS AND METHODS
Data
The multimodal MR imaging scans used in this study were
obtained from The Cancer Imaging Archive19 and comprise base-
line preoperative scans from 108 LGG tumors with segmentation
labels generated by an automated algorithm and revised by an
expert board-certified neuroradiologist.20,21 The tumor segmenta-
tion masks were matched across all MR imaging modalities.
Clinical information including IDH status and the 1p/19q codele-
tion status was obtained from supplementary information pro-
vided with the 2016 pan-glioma article.22 The T2-FLAIR mismatch
sign labels for these cases were used from the original publication,6

which was evaluated by 2 independent neuroradiologists. For these
108 subjects with LGGs, the sample composition for the molecular
characteristics and mismatch signatures are shown in Table 1.

Image Preprocessing
The voxel intensity values for the MR imaging scans are difficult to
compare across subjects due to variation in scanner configurations.
We preprocessed the scans to normalize the intensity values
using a biologically motivated normalization technique called
WhiteStripe (https://cran.r-project.org/web/packages/WhiteStripe/
index.html).23 White Stripe normalization applies a z score trans-
formation to the whole brain using parameters that are estimated
from the distribution of normal-appearing white matter.23 It is
shown to satisfy a set of 7 statistical principles for image normaliza-
tion such as the following: 1) having a common interpretation across
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locations within the same tissue type, 2) being replicable, 3) preserv-
ing the rank of intensities, 4) having similar distributions for the
same tissues of interest within and across patients, 5) not being influ-
enced by biologic abnormality or population heterogeneity, 6) being
minimally sensitive to noise and artifacts, and 7) not resulting in loss
of information associated with pathology or other phenomena.23

This normalization is done for both T2 and FLAIR images. In our
analysis, for each subject, we considered only 1 axial section of the
MR imaging scan that had the largest connected component of tu-
mor from the whole tumor region.

Geographically Weighted Regression
GWR is a spatial-analysis technique to study the spatially varying
relationships between the response and covariates in a regression
model.16 It is a statistical modeling approach similar to locally
weighted regression used in curve-fitting and smoothing applica-
tions. The local regression parameters in a GWR are estimated by
using subsets of data by appropriately weighting them (on the basis

of proximity) with respect to the location at which the model is
being estimated.

GWR Model. We will explain the GWR model in the context of
our analysis. Consider the T2 and FLAIR MR imaging scans for an
axial section and the corresponding tumor segmentation mask.
We perform GWR within the segmented tumor region with the
pixel intensity values of T2 as the response and of FLAIR as predic-
tors. For each tumor pixel, s ¼ 1,...,n (where n is the total number
of tumor pixels in the MR imaging), the GWR model is given as
ys ¼ b so 1 xsb s 1 « s, with ys and xs being the intensity values of
the tumor pixel s from T2 and FLAIR MR imaging scans, respec-
tively. Here, b so is the intercept, b s is the regression coefficient,
and « s is the random error. The spatial location of a tumor pixel is
identified by its corresponding grid coordinates from the axial sec-
tion. We can compute the distance between any pair of tumor pix-
els as the Euclidean distance between the corresponding grid
coordinates. These distances are used as input to a kernel function

FIG 1. Workflow of our proposed approach. We obtained the tumor region from T2 and FLAIR scans using the tumor-segmentation mask. In
step 1, we performed GWR with pixel values from the tumor region in T2 and FLAIR as the response and predictor, respectively. In step 2, a resid-
ual signature (ie, probability density function) was constructed using residuals from GWR. In step 3, we used residual signature–based features
for hypothesis testing and classification models.

Table 1: Sample composition for different molecular characteristics and mismatch signaturesa

Groupings Group 1 Group 2
(A) IDH-mutation status Mutated (n¼ 83) Wild-type (n¼ 22)
(B) 1p/19q codeletion status Noncodeleted (n¼ 56) Codeleted (n¼ 27)
(C) IDH mutant and 1p/19q noncodeleted versus others Noncodeleted (n¼ 56) Others (n¼ 49)
T2-FLAIR mismatch type
(D) In all LGGs Mismatch (n¼ 11) No mismatch (n¼ 94)
(E) In IDH-mutant LGGs Mismatch (n¼ 11) No mismatch (n¼ 72)
(F) In IDH -mutant and 1p/19q noncodeleted LGGs Mismatch (n¼ 11) No mismatch (n¼ 45)

a Three subjects were excluded due to missing data. The 6 groupings based on the molecular status and mismatch indicators are indicated as (A)–(F).
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to compute weights that capture spatial dependence between the
tumor pixels. For example, the weight corresponding to 2 tumor
pixels in close proximity will be higher compared with the weight
for pixels farther away from each other. These weights are then
used to estimate the GWRmodel parameters at each tumor pixel s.
Further details about the model formulation and estimation are
provided in the Online Supplemental Data.

GWR Residuals. As an illustration, we consider «̂ s to be the resid-
ual from the GWR model described above. Here, «̂ s can be inter-
preted as the amount of T2 pixel intensity not explained by the
FLAIR pixel intensity through GWR. To quantitatively assess the
mismatch between T2 and FLAIR images, we consider «̂ s for all
the tumor pixels s ¼ 1,...,n and create a representation of the mis-
match. We construct a probability density function (PDF) using
these GWR residuals to quantify the mismatch. This PDF
(referred to as the residual signature) acts as a surrogate for the
mismatch and can be used for subsequent statistical analysis.

Probability Density Functions
The residual signature in our framework is an object of the space
of PDFs. We wanted to have a metric (distance) that measures the
dissimilarity between any 2 PDFs. There are multiple approaches

to construct such a metric; however,
they pose various computational chal-
lenges.24 We considered an equivalent
representation of the PDFs via a square
root transformation,25 which allows a
simple computation of the distance
between any 2 PDFs using the geome-
try of the space of square root transfor-
mations. This transformation also
facilitates computation of an average
(or mean) PDF, which provides effi-
cient summarization and visualization,
for the sample of PDFs. Details about
the computation of the distance and
average are provided in the Online
Supplemental Data.

Permutation-Based Hypothesis Test.
We devised a permutation-based hy-
pothesis test to investigate any differ-
ences in the average PDFs of the 2
groups (eg, IDH-mutated versus wild-
type). Thus, we first computed the av-
erage PDFs of the 2 groups and used
the distance between 2 average PDFs
as the test statistic. We created the null
distribution for the test statistic by
randomly permuting the group labels
between the subjects. A P value was
constructed by comparing the test sta-
tistic with the null distribution (details
in the Online Supplemental Data).

Classification. Standard classification
algorithms (eg, logistic regression, probit regression) can be used
when the predictors belong to the Euclidean space. However, in our
case, the data object corresponding to each subject is a PDF (ie, the
residual signature). Hence, we used a geometric framework that
maps each PDF to a vector of values via a principal component
analysis for the sample of PDFs (details in the Online Supplemental
Data). Using these Euclidean representations of PDFs (ie, the prin-
cipal component scores), we constructed a probit regression model,
a generalized linear model that models a binary categoric variable
using numeric and/or categoric predictors.

RESULTS
For the 108 subjects with LGGs, we defined 6 different combina-
tions of groups based on their molecular status and the T2-
FLAIR mismatch sign.6 The 6 groupings and the corresponding
sample size for each category are shown in Table 1. Three sub-
jects were excluded due to missing data. The residual signature
for each subject was constructed by computing the kernel density
estimate from the GWR residuals.

Figures 2 and 3 show the T2 TSE and FLAIR images and the
pixel-wise GWR residual magnitudes from the tumor region for
3 sample cases with and without mismatch, respectively. We can
see that the GWR residuals in Fig 2 clearly capture the

FIG 2. T2 TSE and FLAIR MR images and the magnitude of the residual signatures corresponding
to T2-FLAIR mismatch LGGs. Each row corresponds to an axial section from a patient tumor. The
3 columns represent the T2, FLAIR, and magnitude of the GWR residual for each tumor pixel,
respectively.
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hyperintense rim structure that is
characteristic of a mismatch, whereas
in Fig 3, there is no specific pattern to
the GWR residuals but rather just a
noisy distribution of pixel values over
the tumor area. These images indicate
that in cases with the mismatch, there
is a clear difference in the axial rim
along the boundary of the tumor
between the T2 and FLAIR sequences.

Hypothesis Test Results
For each grouping, we computed the
group averages of the PDFs as described
in the Materials and Methods section.
These group-wise average PDFs are
shown as a figure in the Online
Supplemental Data for each of the 6
groupings (A)–(F). Differences in the
group averages are visually evident
(through the differences in the peaks
and tails) for the groupings (B)–(F) but
not for (A). We performed the permu-
tation-based hypothesis test to evaluate
these differences in the groups and
compute P values as described in the
Materials and Methods section. We
considered 100,000 random permuta-
tions for each test, and the correspond-
ing P values are presented in the second
column of Table 2. We also present the
false discovery rate–adjusted P values to
account for multiple comparisons (ie,
multiple hypotheses tests). From these
results, we see that the average residual
signature (or the average PDF) among
the groups for the groupings (B)–(F)
has a small P value (close to .05). This
provides reasonable evidence against
the null hypothesis that the average
PDFs between the 2 groups are the
same. This is in agreement with the vis-
ual differences in the average PDFs of
these groupings (Online Supplemental
Data).

Classification Results
We considered the residual signature for each subject as the predic-
tor and built classification models (as described in the Materials
and Methods section) with the corresponding group label as the
response for each of the 6 groupings. We used a leave-one-out
cross-validation approach for prediction, and the results are pre-
sented in Table 3. For example, we considered the grouping (A)
for IDH status, ie, IDH-mutated and IDH wild-type, and obtained
the vector representation of the PDFs by leaving 1 subject out and
predicting the group label for the left-out subject. This process was
repeated across all the subjects by leaving 1 subject out each time.

FIG 3. T2 TSE and FLAIR MR images and the magnitude of the residual signatures corresponding
to no-mismatch LGGs. Each row corresponds to an axial scan from a patient’s tumor. The 3 col-
umns represent the T2, FLAIR, and magnitude of the GWR residual for each tumor pixel,
respectively.

Table 2: P values (and adjusted P values) from permutation-based hypothesis tests to
test for differences between the group averages of the PDFsa

Comparison P Value P Value (adjusted)
(A) IDH-mutation status .46 .46
(B) 1p/19q codeletion status .03 .05
(C) IDH mutant and 1p/19q noncodeleted versus others .02 .05
T2-FLAIR mismatch type
(D) In all LGGs .03 .05
(E) In IDH-mutant LGGs .04 .05
(F) In IDH-mutant and 1p/19q noncodeleted LGGs .06 .08

a The P values adjusted for multiple comparisons are also presented.

Table 3: Classification results based on leave-one-out cross-val-
idation approach for each of the 6 groupingsa

Comparison AUC and 95% CI Sensitivity Specificity
(A) 0.96 (0.91–1) 0.88 0.96
(B) 0.98 (0.94–1) 1.00 0.98
(C) 0.98 (0.94-1) 0.98 1.00
(D) 0.81 (0.54–1) 0.82 0.94
(E) 0.82 (0.58–1) 0.82 0.93
(F) 0.93 (0.84–1) 0.91 0.91

Note:—AUC indicates area under the curve.
a These include the AUCs with the corresponding 95% CIs, sensitivity, and specific-
ity. The groupings and comparisons indicated as (A)-(F) are described in Table 1.
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We report the area under the curve, its Bonferroni-adjusted 95%
confidence interval, sensitivity, and specificity. The confidence
intervals are Wald-type, which are computed using the DeLong
variance estimator26 using the pROC27 package in R statistical and
computing software (http://www.r-project.org/). Using our resid-
ual signatures as predictors, we saw a strong predictive perform-
ance for the groupings (A)–(C) and (F). Specifically, our residual
signatures have strong sensitivity and specificity for the 1p/19q
codeletion status in IDH-mutant LGGs.

DISCUSSION
The T2-FLAIR mismatch sign is a well-validated indicator of IDH-
mutant 1p/19q noncodeleted LGGs. In this study, we quantified
the mismatch as a PDF constructed using the residuals from a
locally (geographically) weighted regression of the T2 pixel inten-
sities on the corresponding FLAIR image. Furthermore, we eval-
uated the utility of this residual signature in identifying various
molecular subtypes of LGGs. We devised a permutation-based hy-
pothesis test to detect significant differences among the average
PDFs of groups on the basis of molecular subtypes of glioma and a
classification algorithm to predict subtype labels of the tumor.

Figures 2 and 3 capture the hyperintense rim structure that is
characteristic of the T2-FLAIR mismatch signature. The visually
observed differences in rim intensity are summarized in a figure
in the Online Supplemental Data; cases having the T2-FLAIR
mismatch have wider tails in their average PDFs than those with-
out. This could be indicative of the high magnitude of residuals
coming from the tumor rim. Given the high specificity of the
mismatch signature to the IDH-mutant 1p/19q noncodeleted
class of gliomas, we compared the residual signature of these
cases with other classes. Most interesting, we observed significant
differences in the average profile of this class of gliomas com-
pared with other subtypes, regardless of their mismatch labels.
Results from the permutation-based hypothesis test agree with
visual differences in mean signatures. Specifically, comparisons
(B) and (C) indicate significant differences in mean residual pro-
files of the IDH-mutated 1p/19q noncodeleted class of tumors.
This result combined with the comparison (F) about differences
within this subclass with and without mismatch indicate the util-
ity of our approach. Our GWR-based approach is able to learn
subtle features from the images that are difficult to discern visu-
ally. These features could potentially serve as sensitive markers
for the IDH-mutant noncodeleted subtype of gliomas. To validate
this hypothesis, we devised a classification algorithm using
Euclidean representations (ie, principal component scores) of the
T2-FLAIR GWR residual signatures.

The features extracted from GWR residuals are highly predic-
tive of major glioma subtypes. Our classifier identifies IDH-
mutated 1p/19q noncodeleted cases with near certainty in com-
parisons (B) and (C), which is better than its performance in
identifying the mismatch within these cases in comparisons (D)
and (E). Our classification model has high sensitivity and speci-
ficity to discriminate the 1p/19q codeletion status in IDH-mutant
LGGs. This observation supports the findings of Patel et al6 that
report a 100% positive predictive value in predicting IDH-
mutated astrocytomas by visual inspection in a retrospective
study. Our work, however, builds on this result in several

important ways. First, our results demonstrate that IDH-mutated
1p/19q codeletion status can be identified in gliomas from the re-
sidual signatures computed using GWR with high areas under
the curve and specificity. Second, our work is not influenced by
any of the inter- and intra-observer variability that is inherent in
visual inspection of the mismatch sign from the MR images. Our
framework is built on quantitative image analysis and rigorous
statistical theory and provides a potentially powerful radioge-
nomic tool for identifying various molecular subtypes of gliomas.
Our results indicate that radiomic features based on a T2-FLAIR
mismatch are highly predictive of the IDH-mutant noncodeleted
glioma subtype and provide a comprehensive quantitative alter-
native to the visually observed mismatch signature.

Furthermore, our statistical framework does not require
advanced computing resources. The GWR model estimation is
the only computationally intensive step in our framework, which,
on average, took about 22.5 seconds per subject to execute. This
time varies with the number of tumor pixels (ie, varying tumor
sizes). Further details about the computation time are provided
in the Online Supplemental Data. Software to implement our
approach can be made available on reasonable request and with
appropriate permissions from the University of Michigan.

CONCLUSIONS
Inspired by the value of the T2-FLAIR mismatch in identifying
molecular subgroups of gliomas, we have developed a fully auto-
mated algorithm for quantifying the extent of mismatch between
T2 and FLAIR scans, given tumor segmentation masks and
extracted features from the T2-FLAIR residual signature that are
strongly predictive of the glioma subtypes. We have shown that
the residual signatures computed from performing GWR can be
used to build classifiers that are potentially highly specific as well
as sensitive to the IDH-mutant 1p/19q noncodeleted class of glio-
mas but need to be tested in a real-world environment through a
prospective multi-institutional study. Visual identification of the
T2-FLAIR mismatch sign is challenging due to its qualitative def-
inition and readout, as well as the low sensitivity in identifying
the IDH-mutant noncodeleted class of gliomas.14 Our approach
builds highly accurate classifiers on the basis of statistically
informed features of the T2-FLAIR mismatch and may be a use-
ful tool in predicting the molecular subtypes in LGGs.
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