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REVIEW ARTICLE

Quantitative MRI in Multiple Sclerosis: From Theory to
Application

M. Tranfa, G. Pontillo, M. Petracca, A. Brunetti, E. Tedeschi, G. Palma, and S. Cocozza

ABSTRACT

SUMMARY:Quantitative MR imaging techniques allow evaluating different aspects of brain microstructure, providing meaningful in-
formation about the pathophysiology of damage in CNS disorders. In the study of patients with MS, quantitative MR imaging tech-
niques represent an invaluable tool for studying changes in myelin and iron content occurring in the context of inflammatory and
neurodegenerative processes. In the first section of this review, we summarize the physics behind quantitative MR imaging, here
defined as relaxometry and quantitative susceptibility mapping, and describe the neurobiological correlates of quantitative MR
imaging findings. In the second section, we focus on quantitative MR imaging application in MS, reporting the main findings in both
the gray and white matter compartments, separately addressing macroscopically damaged and normal-appearing parenchyma.

ABBREVIATIONS: bSSFP ¼ balanced steady-state free precession; CL ¼ cortical lesions; GRE ¼ gradient recalled-echo; NAWM ¼ normal-appearing white
matter; PD ¼ proton density; qMRI ¼ quantitative MR imaging; QSM ¼ quantitative susceptibility mapping; RF ¼ radiofrequency

While conventional MR imaging plays an unquestionable
role in the diagnosis and management of MS,1,2 it

offers very limited information about the pathophysiology of
tissue damage because conventional sequences are not able to
detect subtle changes affecting WM and GM. Quantitative
MR imaging (qMRI) bridges this gap, detecting brain micro-
structural alterations with high sensitivity and robustness to
interscanner and interobserver variability, thus providing
measures that can be compared among sites and longitudinal
examinations. Furthermore, this technique has been success-
fully used to differentiate MS from other demyelinating dis-
eases, such as neuromyelitis optica, which presents a different
spectrum of relaxometry alterations3 and a peculiar spatial
deep gray matter involvement,4 and also to characterize other
conditions with different etiologies, from vascular disease to
brain tumors.5,6 However, the applications of qMRI extend
beyond the brain, being able to depict changes in liver iron

concentration7 as well as the presence of fibrosis,8 and prostatic

calcifications,9 and to evaluate cortical bone mineral density10 or

myocardial structural alterations.11

Although the definition of qMRI is open to different interpre-
tations, several advanced MR imaging techniques are usually
grouped under this umbrella, including relaxometry, magnetic
susceptibility, diffusion invariants, magnetization transfer, and,
to some extent, perfusion parameters.12 Each of these techniques
offers different, sometimes complementary, insights into the
complex tissue alterations occurring in MS.13 In this light, it is
noteworthy to remember that, while demyelination represents
the end result of a complex phenomenon of inflammation, ulti-
mately leading to axonal and neuronal degeneration, change in
iron homeostasis is a crucial step in the pathophysiology of dam-
age in MS, linked to microglial activation and modifications in
oligodendrocyte functionality.14,15 Relaxometry plays a unique
role, given that most of the above-mentioned qMRI techniques
offer valuable and sensitive tools in myelin assessment but they
lack iron-detection sensitivity. Indeed, relaxometry assesses
abnormalities of iron and myelin, elements that are at the cross-
roads of the inflammatory and neurodegenerative components in
MS pathophysiology.12

In this review, we summarize the role and the application
of qMRI techniques, here defined as relaxometry (estimating
R1, R2, R2*, and, by extension, proton density [PD]) and
quantitative susceptibility mapping (QSM), to the study of
patients with MS.

In the first section, we briefly describe the physics behind
qMRI, together with its neurobiological correlates. In the second
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section, we summarize brain qMRI findings in MS for both the
normal-appearing parenchyma and lesions in the GM and WM
compartments.

qMRI Theory
Impact of Excitation Pulses and Significance of 3D Sequences.
The R1 and R2 relaxation rates, defined as the inverses of T1 and
T2 relaxation times, measure the efficiency of the kinetics mecha-
nisms restoring the thermal equilibrium of the longitudinal and
transverse components of the spin isochromats. An isochromat
represents the magnetic moment associated with a subset of nuclei
(protons, for our purposes) whose cardinality is large enough to
justify a classic description of its dynamics (in terms of the expec-
tation value of the quantum magnetic moment operator) and
whose spatial extent is small enough to assume a strictly uniform
macroscopic magnetic field throughout the subset. The evolution
of the isochromats in an MR imaging sequence (radiofrequency
[RF] and gradient pulses) is strongly dependent on the flip angles
they experience. This shows why accurate R1 and R2 mapping is
only possible through 3D sequences, which, unlike 2D sequences,
guarantee a roughly uniform RF excitation throughout each voxel.

Estimation of Quantitative Maps. In general, the viable protocols
for R1 and R2 mapping in neuroimaging routine rely on the ac-
quisition of multiple 3D spoiled gradient recalled echo (GRE, for
R1) and balanced steady-state free precession (bSSFP, for the
additional information required to estimate R2) sequences at vari-
able flip angles.16 However, several aspects need to be considered
to obtain accurate relaxation maps. First, nonideal slab profiles
can be accounted for with a dedicated sequence for flip angle
mapping17 or through an iterative approach based on the infor-
mation content of the estimated relaxation maps.18 The bias from
nonideal RF spoiling can be removed according to the specific
phase increment implemented by each vendor.19 Finally, to factor
out the effects of off-resonance phenomena impacting the bSSFP
images in the form of banding artifacts, one needs to adopt a
modified version of the original bSSFP approach,18 based on a
synthetic contrast frommultiple phase-cycled bSSFP.20

The estimation of the free induction decay rate (R2*) is compa-
ratively simpler because it depends only on the ratios of the signals
at different TEs, with no RF pulses in between. It is usually
obtained through a multi-GRE sequence with flip angles close to

the Ernst angle for SNR convenience and, therefore, can be esti-
mated on the basis of the same protocol structure adopted for R1
mapping.21

Once R1 and R2* (which rule the signal equation of the spoiled
GRE sequence) have been obtained, PD is ideally obtained without
further acquisitions. Nevertheless, the spatial sensitivity of the re-
ceiver coil for the brain is substantially inhomogeneous; therefore,
an additional low-resolution acquisition of one of the sequences
with the body coil helps to mitigate the inhomogeneity bias.22

Finally, the phase of the complex images acquired for R2*
mapping permits QSM.23 The raw phase is first unwrapped and
then filtered to remove the background component that is not
associated with the local magnetization induced in the paren-
chyma by the main magnetic field.24 The filtered phase is finally
processed to solve the inverse problem leading to the QSM.5 In
this step, special care must be taken to avoid the occurrence of
streaking artifacts that could impact the clinical value of the
image by mimicking spurious anatomic structures (Fig 1).

Importance of Denoising Schemes. The mathematic problems
associated with the qMRI protocols are typically ill-conditioned,
thus leading to a detrimental noise propagation from the acquired
images to the reconstructed maps. Therefore, besides the custom-
ary optimization of the acquisition protocol to maximize the SNR
of the quantitative maps, a denoising step is warranted upstream
of the qMRI pipeline. In this context, multispectral versions of the
non-local means algorithms have been devised to account for the
power distribution of noise in parallel imaging and to reconstruct
the true signal from the raw statistical moments of the acquired
images.25,26

Pathophysiologic Correlates of qMRI. The pathophysiology of
brain damage in MS is multifaceted, being characterized by a
sequence of demyelination and partial remyelination events asso-
ciated with neurodegeneration.27

Microglia activation within normal-appearing WM (NAWM)
is one of the earliest and most prominent features in MS patho-
physiology.28 Subsequently, a loss of integrity of the blood-brain
barrier, driven by proinflammatory mediators produced by resi-
dent and endothelial cells, as well as indirect leukocyte-dependent
damage,27 leads to focal demyelination. As the disease progresses,
oligodendrocyte depletion occurs,29 as well as oligodendroglial iron
release,30 secondary to the high concentration of proinflammatory

FIG 1. An example of quantitative MR imaging maps. Along with findings of a conventional FLAIR sequence (A) are examples of R1 (B), PD (C), R2*
(D), and QSM (E) maps from a 22 -year-old man with MS.
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cytokines produced by the chronically activated microglia,14 with
these mechanisms ultimately resulting in oxidative stress via Fenton
chemistry and reduced regenerative capacity.30

Because these different microstructural changes influence
multiple MR imaging contrasts contemporarily, multiparameter
qMRI represents the most apt approach to explore pathologic
alterations occurring in the MS brain. The undeniable advantage
of qMRI relies on the possibility of generating spatial maps in
which each voxel corresponds to a numeric value reflecting the
physical properties of the examined tissues, such as free water
proportion (PD, R1, R2), myelination (R1, R2, R2*, QSM), or
iron content (R2* and QSM).31,32

While PD is an established measure of the brain free water
pool,33 with PD increase documented in the presence of vasogenic
edema,34 R1 and R2 vary as a function of free water and myelin
concentration, with a higher degree of myelination causing relaxa-
tion time shortening.35,36

With reference to iron, in normal brain tissue, it is mostly
bound to ferritin in oligodendrocytes,37 and its presence is required
for the activity of enzymes involved in myelin production and pres-
ervation.15 Along with myelin, iron accounts for the larger part of
the MR imaging contrast obtained through R2* and QSM.38

However, whereas both iron and myelin determine an R2* increase,
they play opposite roles in QSM. Given the paramagnetic properties
of iron, an increase in its concentration is unequivocally coupled to
an increase in susceptibility, while myelin, being a diamagnetic
compound, influences susceptibility in the opposite direction.38

WM Lesions
Focal WM lesions represent the most typical expression of tissue
damage in MS.39 According to their activity phase, WM lesions can
be histologically subcategorized as early active, late active, chronic
active (also described as slowly expanding or smoldering lesions),
chronic inactive, and shadow plaques (remyelinated lesions).40

In early active lesions, inflammatory activity blooms from ven-
ules, following blood-brain barrier disruption and immune cell infil-
tration, thus leading to progressive demyelination and axonal loss
with a centrifugal spread.41 From an MR imaging perspective, these
phenomena are mirrored by the pattern of enhancement after gado-
linium administration. Indeed, at this stage, lesions usually enhance
centrifugally, with a more pronounced nodular appearance.42 As
inflammation proceeds, cellular infiltrates grow and, combined with
myelin breaking down and edema, result in decreased R1 and R2
values, coupled to increased PD values within lesions43 and transi-
tional values in periplaque WM44 in comparison with NAWM.
These findings are associated with a similar edema-driven R2*
decrease, with no QSM changes because the loss of diamagnetic
myelin is not detectable at this stage (Fig 2).45

In late active lesions, showing a peripheral or ringlike pattern of
enhancement,42 myelin degradation and removal become progres-
sively more substantial, therefore influencing lesion magnetic sus-
ceptibility as assessed by QSM.45,46 At this stage, R1, R2, and PD
values show the same pattern of changes as the early active lesions
in comparison with NAWM, while in R2*, a further signal decrease
is present, coupled to a QSM increase, especially in the lesion

FIG 2. Conventional and quantitative MR imaging findings of WM lesions at different stages. In the upper row, conventional findings (postgadoli-
nium T1-weighted and precontrast T2-weighted, first and second images from left to right respectively) of a typical pattern of nodular enhance-
ment in an early active lesion (arrows) showing isointense signal in QSM (third image, white box) and mild hypointensity in R2* map (fourth
image). In late active lesions (middle row, arrows), a peripheral pattern of enhancement is present, coupled with an area of increased signal at
QSM and a slightly more pronounced hypointensity on R2* maps compared with the previous stage. As lesion staging further increases, the lesion
eventually enters its chronic inactive stage (lower row, arrows), characterized by absent gadolinium enhancement, a QSM hyperintensity, and a
hypointense R2* signal. Modified with permission from Zhang et al.45
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center, due to additional myelin debris removal45 by anti-inflam-
matory M2 macrophages.14 Although iron begins concentrating in
M1macrophages and activated microglia at a later stage,14 its levels
may acutely increase following rapid oligodendrocyte destruction,
counterbalancing myelin loss in R2* and reinforcing QSM hyper-
intensity in some lesions (Fig 2).47

When blood-brain barrier damage is resolved, MS lesions no
longer show postgadolinium enhancement and are, therefore, cate-
gorized as chronic, further subdivided into active or inactive,
depending on whether some degree of inflammatory activity per-
sists.40 In chronic lesions, the combination of demyelination, hypo-
cellularity, and free water fraction increase leads to R1 and R2
decrease, while PD increases, compared with early and late active
lesions.43 Transition to chronicity is associated with a complex pat-
tern of changes in iron content.38 Indeed, while iron concentration
may decrease due to myelin sheaths and oligodendrocyte deple-
tion,29,37 some degree of iron accumulation occurs, in parallel,
within iron-laden macrophages and microglia at lesions bor-
ders.14,32 In chronic active lesions, this inflammation-related iron
accumulation at the rim of the lesions is emphasized, leading to
increased R2* and QSM values.45,46 With time, lesions eventually
become chronic inactive or shadow plaques,40 with low R2* values
but still high QSM signal, which only ultimately decreases in very
late stages to resemble NAWM signal, due to iron depletion and
partial remyelination (Fig 2).46

NAWM
Despite appearing spared by lesions on conventional MR imaging
sequences, NAWM is characterized by complex microstructural
changes reflecting inflammation, demyelination, gliosis, and axonal
loss.28 The mechanisms underlying NAWM damage are mainly
Wallerian degeneration of fibers transected by focal lesions and dif-
fuse microglial activation.28,48 Axonal swelling and edema49 have
also been observed globally in NAWM and, together with alteration

in iron homeostasis, can be assessed
through relaxation and magnetic suscep-
tibility variations.24,38

The NAWM usually shows lower R1
and R2 and higher PD values, compared
with the WM of healthy controls.50,51

These changes seem to be mostly related
to inflammatory infiltration, with edema
and myelin loss.49 A decrease in iron
concentration has been observed in
patients with MS in comparison with
healthy controls using R2* maps.50 This
reduced relaxation rate might be driven
by iron release from oligodendrocytes
during chronic inflammation.14,29 Most
interesting, the iron level in NAWM,
estimated by QSM, is not stationary but
fluctuates according to the presence of
inflammatory activity.52 Indeed, during
the active phases of the disease, when
iron begins to accumulate in newly
forming lesions, NAWM magnetic sus-
ceptibility values appear to be similar to

those observed in the WM of healthy controls,52 as also confirmed
by ex vivo data.29 On the contrary, mean QSM values of the
NAWM seem to increase in the absence of gadolinium-enhancing
lesions, suggesting that iron might play a role in tissue regeneration
during periods of disease inactivity.15

Main qMRI findings in the WM compartment are reported in
Table 1.

Deep Gray Matter
The major structures of the deep gray matter nuclei can be ana-
tomically and functionally subdivided in the thalamus and basal
ganglia, whose most relevant nuclei are the globus pallidus, puta-
men, and caudate nucleus. Given their relatively different histol-
ogy, the thalamus and basal ganglia will be discussed separately.

Thalamus. Thalamic involvement in MS has been documented by
both ex-53-55 and in vivo53 studies. This region is not only a site of pri-
mary axonal damage, but given its high interconnectivity with other
brain regions, it suffers from secondary degeneration caused by WM
lesions involving thalamic projection fibers.53,54 Recently, a decrease
in both thalamic iron content and concentration56-61 has been docu-
mented in patients with MS in comparison with healthy controls,
with the most evident changes detected within the pulvinar.59,61

Previous studies, however, reported conflicting results,62-66

only partially ascribable to the physiologic nonlinear trajectory fol-
lowed by thalamic iron concentration during the life span.67 Such
conflicting data should be interpreted considering the impact of at-
rophy on iron concentration.57,68 In particular, the concept of R2*
mass (the sum of all the R2* values in a specific region)57 was
recently introduced as an index of iron content independent of at-
rophy. With this approach, the decrease in thalamic iron content
has been confirmed,57 highlighting the importance of distinguish-
ing between (and reporting both) iron concentration and content
(Fig 3).56,57,59,60

Table 1: Major qMRI findings in MS—WM compartment
Site Pathologic Processes and qMRI Correlates

WM lesions
Early active Decreased R1, R2, and R2* values, along with increased PD,

reflecting initial myelin degradation and edema43,45

Late active Decreased R1 and R2 values, coupled with increased PD, with
myelin debris removal that determines further R2* decrease and
QSM increase43,45,51

Chronic active Further R1 and R2 decrease, with PD increase, due to demyelination
progression;43 increased R2* and QSM at the periphery of the
lesions due to iron-laden microglia and macrophages45,46

Chronic inactive Compared with chronic active, R2* decreases with high QSM
values; across time, susceptibility values gradually become similar
to those in NAWM46

NAWM Decreased R1 and R2 values, with increased PD, compared with the
WM of healthy controls,50,51 reflecting edema and myelin loss
secondary to inflammatory infiltration.

During active phases of the disease, iron is released from
oligodendrocytes and begins to accumulate in newly forming
lesions, causing an R2* decrease50 and no relevant modification
of QSM signal52
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Basal Ganglia. The basal ganglia are also the site of both demye-
lination69 and neurodegeneration, with reduced neuronal density,
axonal damage, and oligodendrocytes loss.44,55

Similar to what we described for the thalamus, the progressive
damage of the basal ganglia leads to atrophy.69 Here, studies have
more consistently reported an increase in R2*58,64-66,70,71 or sus-
ceptibility61,64,66,70,72 in patients with MS compared with controls,
suggesting a progressive iron accumulation, beyond the analogous
physiologic process detectable in healthy individuals.73

Nonetheless, these findings should also be interpreted in view
of the effect of atrophy on tissue iron concentration.57 Indeed,
even with stable regional iron content, volume reduction leads to
increased mean iron concentration.57 In particular, a prominent
decline in iron content with time in all basal ganglia has been
demonstrated, coupled with an increased or stable iron concen-
tration compared with controls at the level of putamen, caudate
nucleus, and globus pallidus.60,72 In line with these results, some
recent studies failed to identify any difference between patients
with MS and controls in terms of iron content,59 while others
reported a decrease of this parameter in the putamen and caudate
nucleus of patients with MS (Fig 3).56,57

Cortical Lesions
From a relaxometry perspective, no studies have investigated R1
changes in cortical lesions (CL). However, beyond demyelination,
CL are characterized by a decreased iron load, a feature that allows
differentiating them from a normal-appearing cortex through the
evaluation of R2* maps, as shown in postmortem samples.74,75 In
particular, the progressive destruction of iron-rich myelin sheaths
and oligodendrocytes76 and the subsequent uptake of iron and
myelin debris by activated macrophages and microglia lead to
decreased R2* values in CL.77 On the other hand, QSM has been
used to analyze the heterogeneity of CL in different disease
stages,78 showing a mixed pattern of appearance. While QSM-
hyperintense CL have been more frequently observed in patients
with relapsing-remitting MS, QSM-hypointense CL are mostly
identified in subjects with a secondary-progressive phenotype.78

While the increased susceptibility might be due to iron release
from oligodendrocytes, typical of the inflammatory phase of the
disease, the reduced susceptibility might be linked to iron deple-
tion in chronic lesions.29

Normal-Appearing Cortex
Similar to the NAWM, the cortex, which does not show signal
changes on conventional MR imaging, is subject, from a patho-
logic standpoint, to neuronal and axonal loss occurring regardless
of demyelination.76,79 The assessment of relaxometry and QSM
changes in normal-appearing cortex is confounded by the physio-
logic layer-specific iron content,80 which represents the main
source of cortical R2*81 and susceptibility contrast.36 Nevertheless,
a decrease in both R1 and R2* values has been reported in MS in
normal-appearing cortex, accounting for demyelination and iron
depletion, respectively.50 Consistent with the hypothesis of cortical
demyelination triggered by chemokines produced by lymphocytic
infiltrates in the meningeal compartment,82 a recent study has
reported coherent cortical gradients of R1 and R2*, oriented from
the subpial layer to the WM interface.83 In the same study, QSM
showed a lack of sensitivity in distinguishing the different layers,
probably due to the counteracting effects of diamagnetic myelin
and paramagnetic iron modifications.83

FIG 3. Pattern of iron concentration, iron content, and myelin con-
tent changes in deep gray matter nuclei in MS. Results of voxelwise
analyses comparing patients with MS with healthy controls, showing
the presence of an increased iron concentration at the level of the
basal ganglia (red-yellow), coupled with a decrease in iron and myelin
content mainly affecting the thalami and, in particular, the pulvinar
nuclei (blue-light blue). Modified with permission from Pontillo et
al.59 HC indicates healthy control; 1-r , 1 minus P value.
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The main qMRI findings of the GM compartment are
reported in Table 2.

CONCLUSIONS
In this review, we offered a comprehensive overview of qMRI
applications in MS, while also describing the theory behind map
generation and the most likely histologic correlates of qMRI find-
ings. The multiparameter nature of qMRI has already allowed
researchers to gain additional, valuable insights about the multifac-
eted pathophysiology of brain damage in MS. Given the increasing
accessibility to quantitative sequences on novel MR imaging scan-
ners, in the near future, qMRI will also likely play a fundamental
role in clinical practice as a sensitive tool to quantitatively assess
brain damage in patients with MS, with relevant implications for
prognostic stratification and treatment-response evaluation.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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