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ORIGINAL RESEARCH
ADULT BRAIN

Automated Detection of Cerebral Aneurysms on TOF-MRA
Using a Deep Learning Approach: An External Validation

Study
N.C. Lehnen, R. Haase, F.C. Schmeel, H. Vatter, F. Dorn, A. Radbruch, and D. Paech

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral aneurysms yield the risk of rupture, severe disability and death. Thus, early detection of
cerebral aneurysms is crucial to ensure timely treatment, if necessary. AI-based software tools are expected to enhance radiolog-
ists' performance in detecting pathologies like cerebral aneurysms in the future. Our aim was to evaluate the diagnostic perform-
ance of an artificial intelligence–based software designed to detect intracranial aneurysms on TOF-MRA.

MATERIALS AND METHODS: One hundred ninety-one MR imaging data sets were analyzed using the software mdbrain for the
presence of intracranial aneurysms on TOF-MRA obtained using two 3T MR imaging scanners or a 1.5T MR imaging scanner accord-
ing to our clinical standard protocol. The results were compared with the reading of an experienced radiologist as a criterion
standard to measure the sensitivity, specificity, positive and negative predictive values, and accuracy of the software. Additionally,
detection rates depending on size, morphology, and location of the aneurysms were evaluated.

RESULTS: Fifty-four aneurysms were detected by the expert reader. The overall sensitivity of the software for the detection of cere-
bral aneurysms was 72.6%, the specificity was 87.2%, and the accuracy was 82.6%. The positive predictive value was 67.9%, and the
negative predictive value was 88.5%. We observed a sensitivity of 100% for saccular aneurysms of .5mm without signs of thrombosis
and low detection rates for fusiform or thrombosed aneurysms of 33.3% and 16.7%, respectively. Of 8 aneurysms that were not
included in the initial written reports but were detected by the expert reader, retrospectively, 4 were detected by the software.

CONCLUSIONS: Our data suggest that the software can assist radiologists in reporting TOF-MRA. The software was highly reliable
in detecting saccular aneurysms, while for fusiform or thrombosed aneurysms, further improvements are needed. Further studies
are necessary to investigate the impact of the software on detection rates, interrater reliability, and reading times.

ABBREVIATION: AI ¼ artificial intelligence

The prevalence of intracranial aneurysms has been estimated to
be up to 2% of the population. They account for up to 85% of

nontraumatic SAHs, potentially leading to severe disability and
death.1 MR imaging and CT have been shown to be reliable tools
for the detection of intracranial aneurysms with accuracies of up
to 90%.2 Due to the workload of radiologists increasing during the
past years,3 innovative tools are needed to reduce the radiologist’s

workload while maintaining or even improving the quality of
patient care.

There have been early attempts to introduce conventional com-
puter-aided diagnosis for the detection of intracranial aneurysms
with sensitivities of 80% and 95%, respectively, but with the need to
accept high rates of false-positive findings.4 Computer-aided diag-
nosis without the use of modern machine learning algorithms has
also been shown to improve the diagnostic performance of radiol-
ogists in terms of the detection of cerebral aneurysms by TOF-
MRA.5,6 More recently, research has shifted toward more advanced
technologies using deep learning algorithms that showed promising
results in the detection of intracranial aneurysms using both CTA7-9

and TOF-MRA.10-16 In addition, it has been shown that the use of
deep learning software solutions could increase the reader’s per-
formance in terms of the detection of aneurysms by TOF-MRA.17

Mdbrain (mediaire) is a CE-marked, commercially available
software solution that has been designed to assist radiologists when
reporting MR imaging of the brain. The authors of the current
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study had an early version of an add-on to mdbrain designed to
automatically detect intracranial aneurysms on TOF-MRA images
at their disposal and performed an independent, external validation
of its diagnostic performance. We hypothesized that the software
can assist reading radiologists in the detection of intracranial aneur-
ysms. Therefore, we created a diverse study sample with a large
variety of aneurysm sizes, locations, and morphologies acquired on
different clinical MR imaging scanners at 3T and 1.5T to test the
diagnostic performance and the generalizability of the software.

MATERIALS AND METHODS
Institutional review board approval was obtained for this retro-
spective study, and the need for written informed consent was
waived.

The data set consisted of a total of 209 MR imaging studies
with TOF-MRA obtained between March 2018 and January 2022.
Most studies were consecutive cases from our PACS system, but
the data set was enriched with cases with known aneurysms.
Eighteen imaging studies were excluded due to poor image quality
deemed nondiagnostic by the expert reader or due to major com-
peting pathologies, mainly major cerebral hemorrhage suspected
of creating false-positive results.

The MR imaging studies included were retrospectively
reviewed by an experienced radiologist (with 6 years of experi-
ence in interpreting MR imaging of the brain) for the presence,
localization, size, and configuration of intracranial aneurysms
under full consideration of the patients’ clinical records, previous
or subsequent imaging studies including DSA, and the respective
written reports. For aneurysm size, the largest diameter of the
aneurysm was measured using multiplanar reconstructions. This
expert reading served as the diagnostic reference standard.

The images were obtained using either 2 clinical 3TMR imaging
scanners (Achieva, Philips Healthcare; Discovery, GE Healthcare)
or a 1.5T MR imaging scanner (Achieva). The patients were placed
in the supine position. The axial 3D TOF sequences were acquired
according to the routine clinical protocol used at our institution
(TR ¼ 19.33–20.12ms; TE ¼ 3.68–3.80ms; section thickness ¼
1mm; increment = 0.5mm). FOV and matrix size were chosen
according to the patient’s characteristics by the radiology technician.
The studies were anonymized and processed by the artificial intelli-
gence (AI)-based software solution mdbrain, Version 4. Along with
a reconstructed TOF sequence highlighting the detected aneurysms
in color with a bounding box, quantitative reports were sent to the
PACS system. Those reports displayed representative images high-
lighting the largest aneurysm detected and quantitative measures of
the size of each detected aneurysm (volume in microliters and
diameter in millimeters). The sensitivity and specificity of the soft-
ware could not be adjusted by the authors.

The underlying segmentation algorithm is based on a 3D con-
volutional neural network with a U-NET architecture.18 The
model was trained on .100 brain MR imaging data sets of both
healthy subjects and subjects with saccular cerebral aneurysms,
obtained on a variety of Philips scanners, at 1T, 1.5T, and 3T,
respectively. For each subject, the data consisted of a TOF-MRA
scan as well as a corresponding binary mask of the unruptured
aneurysms, as segmented by an expert radiologist. The training
data set contained a total of 93 saccular aneurysms; 4 (4.3%)

showed signs of partial thrombosis. The aneurysms were localized
as follows: anterior communicating artery, 17%; A2 segment of the
anterior cerebral artery, 10%; C6 segment of the ICA, 20%; C7 seg-
ment of the ICA, 22%; M1 or M2 segment of the MCA, 20%; and
basilar artery, 9%. No fusiform aneurysms were included in the
training process. Before training, all data were resampled to a fixed
spacing before the intensity was normalized per image for zero
mean and unit variance. During training of the neural network
(using stochastic gradient descent), the input was provided in
batches of patches, in which it was ensured that some patches con-
tained aneurysm voxels and others did not. Augmentation was per-
formed on the fly during training on the input patches to increase
the generalization ability of the neural network. Mdbrain was pur-
chased by the Department of Neuroradiology, University Hospital
Bonn, at reduced cost. The authors had full control of the data and
the information submitted for publication.

Statistical analyses were performed with R statistical and com-
puting software, Version 4.0.3 (http://www.r-project.org/) and R
Studio, Version 1.2.5033 (http://rstudio.org/download/desktop)
using the caret package.19 The diagnostic performance of the AI
software was compared with the radiologist’s findings using con-
fusion matrices. We calculated the overall sensitivity, specificity,
positive predictive value, negative predictive value, and accuracy
as well as for specific subgroups, like different aneurysm sizes,
aneurysm localization (including extradural versus intradural in
the anterior circulation), saccular and fusiform aneurysms, and
aneurysms that showed signs of thrombosis or inhomogeneous
signal intensity. The Mann-Whitney U test was used to determine
statistical significance. Aneurysms that were detected by the radi-
ologist and also by the software were defined as true-positive;
those that were detected by the software but not by the radiologist
were defined as false-positive. When there were no aneurysms
reported by the software or the radiologist, the case was defined as
true-negative. Each aneurysm that was missed by the software but
detected by the radiologist was counted as a false-negative.

RESULTS
Our study sample consisted of 191 subjects with 54 aneurysms in
total. One hundred nine (57.1%) subjects were women, and 82
patients were men. The mean age was 58.2 years (median,
62 years; range, 18–95 years). One hundred thirty-seven (71.7%)
patients were scanned at 3T, 54 patients were scanned 1.5T.
Forty-seven patients (24.6%) had at least 1 aneurysm by TOF-
MRA, and 11 patients (5.8%) had .1 aneurysm. Twenty-eight
(48.3%) aneurysms detected by the radiologist were angiographi-
cally proved. One aneurysm had a history of rupture with SAH.
Fifty-one (94.4%) were saccular aneurysms, while the remaining
3 were classified as fusiform aneurysms. Six (11.1%) aneurysms
showed signs of partial thrombosis. The mean largest diameter of
the detected aneurysms was 7.3mm (median, 4.1mm; range, 1.2–
45.4mm).
In a subgroup analysis, we also analyzed the diameters of saccular
aneurysms without any sign of thrombosis, with a mean largest
diameter of 4.3mm (median, 3.9mm; range, 1.3–10mm). Thirty-
nine (72.2%) aneurysms were located in the anterior circulation,
while the remaining 15 were located in the posterior circulation.
Forty-six (85.2%) of the 54 aneurysms were correctly reported in
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the initial written report, while the remaining 8 aneurysms were
retrospectively found by the expert reader or were revealed by
DSA and could be seen retrospectively on the initial MR imaging
scan.

The cases finally included in our study could all be processed
by the software. The overall diagnostic performance is summar-
ized in the Online Supplemental Data. Examples of accurately
and inaccurately reported findings are shown in Figs 1–3. The
software detected a total of 56 aneurysms, of which 38 were true-
positive findings; the remaining 18 were false-positive findings
(0.1 false-positive/case). One hundred twenty-three studies were
correctly classified as negative by the software, while 16 aneur-
ysms found by the expert reader were missed by the software and
declared false-negatives. The overall accuracy of the software was
82.6%, with a sensitivity of 70.4%, a specificity of 87.2%, a positive
predictive value of 67.9%, and a negative predictive value of
88.5%. Three aneurysms were declared fusiform aneurysms by
the expert reader, of which 2 (66.7%) were not detected by the
software. In addition, 6 aneurysms showed signs of partial throm-
bosis, of which only 1 (16.7%) was correctly detected by the soft-
ware, while the remaining 5 (83.3%) were not detected by the
software. The remaining 11 aneurysms that were not detected by
the software were saccular aneurysms with no signs of thrombo-
sis. The mean largest diameter of the saccular aneurysms with no
signs of thrombosis missed by the software was 2.2mm (median,
2.3mm; range, 1.3–4.3mm).

There was a statistically significant difference between saccu-
lar aneurysms with no signs of thrombosis detected by the soft-
ware and those that were not detected in terms of largest
diameter (P= .04). Seven of the 11 aneurysms missed by the soft-
ware were located at the C4 or C5 level of the ICA; the remaining
aneurysms missed by the software were located at the anterior
communicating artery (n ¼ 1), posterior communicating artery
(n ¼ 1), basilar artery (basilar tip excluded, n ¼ 1), and the supe-
rior cerebellar artery (n¼ 1). We observed that 50% of the aneur-
ysms located at the ICA, levels C1–C4, were correctly diagnosed
by the software. For supraophthalmic aneurysms in the anterior
circulation, the sensitivity was 77.8%, with an accuracy of 85.7%.
A detailed overview of the different localizations of the aneur-
ysms and the detection rates of the algorithm is shown in the
Table. For saccular aneurysms with diameters of $5mm and no
signs of thrombosis or inhomogeneous signal intensity, the sensi-
tivity, specificity, and accuracy rose up to 100%, 87.2%, and
88.0%, respectively. Four of the 8 aneurysms initially missed in
the original reports were correctly detected by the software.

DISCUSSION
This single-center study compared the diagnostic performance of an
AI-based software trained on TOF-MRI studies to detect cerebral
aneurysms with an expert radiologist’s reading of 191 TOF-MRI
studies.

Our goal was to test the software performance with a data set
covering the variety seen in routine clinical care. In a patient
cohort with a large range of ages, aneurysm sizes, configurations,
and localizations examined with scanners of 2 different vendors at
different field strengths, the software solution showed an overall
accuracy of 82.6%, with a sensitivity and specificity of 70.4% and
87.2%, respectively. Our data suggest that the software can help
the reading radiologist in detecting aneurysms when reporting
TOF-MRI studies. Eight aneurysms found by the expert reader
had not been reported in the initial, written reports. Four of these

FIG 1. Right MCA aneurysm correctly detected by the software,
cross-sectional (A) and MIP images (B). C–E, Axial, sagittal, and coronal
view as reconstructed by the software, with the aneurysm highlighted
in orange and with a surrounding white box.

FIG 2. Right MCA bifurcation mistaken for an MCA aneurysm by the
software. No aneurysm is shown by TOF-MRA, either by the cross-
sectional image (A) or by MIP (B). C–E, Right MCA bifurcation high-
lighted in orange with a surrounding white box.

FIG 3. Large, thrombosed right MCA aneurysm (arrows) missed by
the software and a small left MCA aneurysm (arrowheads) that was
correctly detected by the software but missed in the initial read,
probably due to satisfaction of search. A, Axial cross-sectional image
of TOF-MRA. B, MIP image with the right MCA aneurysm barely visi-
ble and the left MCA aneurysm well visible. C–E, Axial, sagittal, and
coronal reconstructions with the left MCA aneurysm being correctly
highlighted in orange with a surrounding white box and the right
MCA aneurysm not highlighted.
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aneurysms were correctly detected by the software and thus would
not have been missed if the software had been used in the clinical
practice.

Other investigators have already worked on software solu-
tions to automatically detect aneurysms in TOF-MRI studies.
Sichtermann et al13 achieved sensitivities as high as 90% with their
convolutional neural network–based approach, but with 6.1 false-
positives per case. When Sichtermann et al13 shifted toward more
acceptable false-positive rates of 0.8 per case, the sensitivity
decreased to 79%. Ueda et al11 achieved sensitivities of 93% in their
test data set, which was acquired at 4 different institutions, but
they reported no specificity, only that their focus was not to miss
aneurysms because their algorithm was intended to assist radiolog-
ists in not missing cerebral aneurysms. Stember et al12 reported a
sensitivity of 98.8% for the detection of cerebral aneurysms with
only 1 of 86 aneurysms missed by their algorithm. However, they
used only MIP images of TOF-MRA, while the aforementioned
studies all used source images of 3D TOF-MRAs. In addition, they
excluded aneurysms of,3mm. Nakao et al10 reported a sensitivity
of 94.2%, but with a high false-positive rate of 2.9 per case. At a
sensitivity of 70%, they reported 0.26 false-positives per case. Like
Stember et al, they used MIP images of TOF-MRAs for training,
validation, and testing of their algorithm. Terasaki et al14 achieved
a sensitivity of up to 89.1% with a rate of 4.2 false-positives per
case. Chen et al15 reported a sensitivity of 82.1% with a false-posi-
tive rate of 0.86 per case. Claux et al16 reported a sensitivity of 78%
with a rate of 0.5 false-positives per case.

While the sensitivities we report seem relatively lower com-
pared with the aforementioned studies, there are some differences:
First, we performed an external validation, a crucial step in the
validation process of algorithms designed to assist radiologists in
avoiding overfitting to the test data set and to prove the generaliz-
ability of the software solution.20 Our data set was acquired on 3
different clinical scanners at an entirely different institution than
the one where the data set was used to train, validate, and test the

software solution we report. In contrast,
the aforementioned studies all reported
the diagnostic performance of their
algorithms on their test data sets that
were acquired at the same institutions
as the data sets used for training and val-
idation, though Ueda et al11 and
Terasaki et al14 tried to avoid overfitting
by using images from 4 different institu-
tions. To the best of our knowledge,
there have been no studies published on
the diagnostic performance of other
commercially available AI-tools address-
ing the automated detection of brain
aneurysms by TOF-MRA that we could
use to compare our results.

Second, we included not only MR
imaging studies with aneurysms in our
data set but also a high number of stud-
ies with negative findings showing no
aneurysms, trying to get a more realistic
collective to learn how far the algorithm

is able to reliably rule out the presence of aneurysms in studies
that have been read as having normal findings by the expert
reader. However, our data set still does not reflect reality because
we enriched the collective with patients who had aneurysms,
allowing us to further investigate different localizations, sizes, and
configurations of the aneurysms detected. Third, the studies men-
tioned above reported high sensitivities but, in the case of Nakao
et al10 and Sichtermann et al13, also a high rate of false-positive
findings, with the sensitivities decreasing to 79% and 70%, respec-
tively,10,13 when reducing the rate of false-positives, values that are
comparable with our findings because we found a rate of only 0.1
false-positive finding per case. Because AI software solutions like
mdbrain will likely not only be used on high-risk populations but
will also be available for every examination acquired with no
regard for the risk constellation, we regard a low rate of false-posi-
tive findings as highly important, mainly to reduce the risk of
unnecessary follow-up examinations but also to actually reduce
the workload of the radiologists using the software. Fourth, 2 of
the studies used MIP images instead of source images of 3D TOF-
MRA; thus, the comparability with our study is limited.

In a second step, we further evaluated different subgroups of
aneurysms to further investigate the performance of the software.
Most interesting, fusiform aneurysms were detected in only 1 of 3
cases, probably because the software has been trained only on sacc-
ular aneurysms and the current version is not recommended for
use on fusiform aneurysms. Also, aneurysms that showed signs of
thrombosis or inhomogeneous signal intensity by TOF-MRA were
detected in only 1 of 6 cases, a phenomenon that has similarly
been reported by Ueda et al.11 We suspect that the low detection
rate in this subgroup is due to the inhomogeneous signal within
the aneurysms, making it more difficult for the algorithm to cor-
rectly segment the vessel and the aneurysm to their full extent.
Also, the training data set contained only 4 cases of aneurysms
with signs of partial thrombosis. Our findings may motivate fur-
ther optimization of AI-based aneurysm detection for such cases.

Localizations of the aneurysms and the sensitivity of the softwarea

Localization No. (%) Correctly Detected by CNN %
Anterior circulation 39 (72.2%) 27 69.23%
C1–C4 (infraophthalmic) 12 (22.2%) 6 50.0%
Supraophthalmic 27 (50%) 21 77.8%
C5/6 7 (13.0%) 5 71.4%
ICA terminus 1 (1.9%) 1 100.0%
AComA 7 (13.0%) 6 85.7%
MCA 11 (20.4%) 8 72.7%
A1 1 (1.9%) 1 100.0%

Posterior circulation 15 (27.8%) 11 73.3%
Basilar tip 1 (1.9%) 1 100.0%
PComA 8 (14.8%) 7 87.5%
SCA 2 (3.7%) 1 50.0%
AICA 0 (0.0%) 0 NA
PICA 1 (1.9%) 1 100.0%
V4 1 (1.9%) 1 100.0%
Basilar artery 2 (3.7%) 0 0.0%

Note:—AComA indicates anterior communicating artery; PComA, posterior communicating artery; SCA, superior
cerebellar artery; NA, not applicable; CNN, convolutional neural network.
a The specificity of the algorithm was 87.2%. The term “basilar artery” indicates aneurysms of the basilar artery that
do not arise from the basilar tip, the SCA, or the AICA. C5/6 includes ICA aneurysms that are located in the ICA
segments C5 or C6. Aneurysms located at the ICA terminus or the origin of the PComA are listed separately.
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While 5 aneurysms that were missed by the algorithm were
either fusiform, thrombosed, or both, the remaining 11 aneurysms
that were missed by the software were saccular aneurysms with reg-
ular signal intensity. Their mean diameter was 2.2mm, compared
with an overall mean diameter of 7.3mm, with a statistically sig-
nificant difference for aneurysm size in saccular aneurysms with
no signs of thrombosis, so we may conclude that besides fusiform
or thrombosed aneurysms, small aneurysms cannot be reliably
excluded using the software. Here, one must also take into
account that even an experienced reader can misinterpret infun-
dibular artery origins or inhomogeneous flow signal as small
aneurysms when no DSA data are available. In contrast, no saccu-
lar aneurysms with diameters of$5mm with no signs of throm-
bosis were missed by the software, highlighting its potential use
for clinically relevant findings that should not be missed.

As a third step, we investigated the diagnostic performance
depending on the location of the aneurysms. Due to the low num-
ber of cases, we can only describe our findings: For infraophthal-
mic aneurysms in the anterior circulation, we found a sensitivity
of only 50%. We hypothesize that the curvature of the vessel as
well as the inhomogeneous signal intensity that can be observed
in these regions account for this low detection rate. Also, there
were no infraophthalmic ICA aneurysms included in the training
data set, very likely leading to this comparably poor result. For
supraophthalmic aneurysms in the anterior circulation, we found
a higher sensitivity of 77.8% for this clinically more relevant sub-
group because supraophthalmic aneurysms are at risk of causing
SAH, while infraophthalmic aneurysms are not due to their extra-
dural localization.21

Our study had some limitations. First, its retrospective nature,
all MR imaging studies being acquired at the same institution,
both the training data set and most of our MR imaging studies
being acquired on MR imaging scanners of the same vendor, and
our study sample being enriched with known aneurysms limit
the possibility of evaluating the use of the algorithm in the setting
of everyday clinical practice. However, it can serve as an external
validation of the software solution because our data set was not
acquired at the same institution as the data sets used for training,
validation, and testing. Furthermore, our images were acquired
on 3 different scanners by 2 different vendors, at field strengths
of 3T and 1.5T, making them a heterogeneous study sample, rep-
resenting the variety of examinations seen in our daily clinical
routine. However, additional studies may be necessary to investi-
gate how the software performs on images obtained onMR imag-
ing scanners of different vendors.

Second, the number of cases is too small to draw final conclu-
sions on differences depending on aneurysm locations; thus, our
findings are of rather descriptive nature regarding location. Third,
the software was not designed to replace the radiologist but to
support radiologists in detecting aneurysms; our study investi-
gated the diagnostic performance of the software alone against an
experienced human reader. Sohn et al17 reported the improved
diagnostic performance of a neurologist, a neurosurgeon, and a
radiologist for the detection of cerebral aneurysms by TOF-MRA
when supported by an AI software solution compared with their
diagnostic performance without the support of the software.
While we suspect that mdbrain can have a similar effect on the

performance of readers, this was not systematically assessed in our
study, and whether the software can assist radiologists in their
daily work will be a matter of further investigation.

CONCLUSIONS
In our study, we assessed the potential of a commercially avail-
able and CE-marked software solution to automatically detect
intracranial aneurysms on TOF-MRI data. Thus, our findings
are important to radiologists using the software, to understand
its capabilities but also its limitations. We demonstrated that the
software has the potential to increase the detection rates for
intracranial aneurysms while showing an acceptable rate of
false-positive findings. There is need for further investigation to
learn whether the software can assist radiologists in their daily
routine to improve detection rates, interrater reliability, and
reading times.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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