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ORIGINAL RESEARCH
PEDIATRICS

Radiomics Can Distinguish Pediatric Supratentorial
Embryonal Tumors, High-Grade Gliomas, and Ependymomas

M. Zhang, L. Tam, J. Wright, M. Mohammadzadeh, M. Han, E. Chen, M. Wagner, J. Nemalka, H. Lai,
A. Eghbal, C.Y. Ho, R.M. Lober, S.H. Cheshier, N.A. Vitanza, G.A. Grant, L.M Prolo, K.W. Yeom, and A. Jaju

ABSTRACT

BACKGROUND AND PURPOSE: Pediatric supratentorial tumors such as embryonal tumors, high-grade gliomas, and ependymomas
are difficult to distinguish by histopathology and imaging because of overlapping features. We applied machine learning to uncover
MR imaging–based radiomics phenotypes that can differentiate these tumor types.

MATERIALS AND METHODS: Our retrospective cohort of 231 patients from 7 participating institutions had 50 embryonal tumors,
127 high-grade gliomas, and 54 ependymomas. For each tumor volume, we extracted 900 Image Biomarker Standardization
Initiative–based PyRadiomics features from T2-weighted and gadolinium-enhanced T1-weighted images. A reduced feature set was
obtained by sparse regression analysis and was used as input for 6 candidate classifier models. Training and test sets were randomly
allocated from the total cohort in a 75:25 ratio.

RESULTS: The final classifier model for embryonal tumor-versus-high-grade gliomas identified 23 features with an area under the
curve of 0.98; the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 0.85, 0.91, 0.79, 0.94,
and 0.89, respectively. The classifier for embryonal tumor-versus-ependymomas identified 4 features with an area under the curve
of 0.82; the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 0.93, 0.69, 0.76, 0.90, and
0.81, respectively. The classifier for high-grade gliomas-versus-ependymomas identified 35 features with an area under the curve
of 0.96; the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 0.82, 0.94, 0.82, 0.94, and
0.91, respectively.

CONCLUSIONS: In this multi-institutional study, we identified distinct radiomic phenotypes that distinguish pediatric supratentorial
tumors, high-grade gliomas, and ependymomas with high accuracy. Incorporation of this technique in diagnostic algorithms can
improve diagnosis, risk stratification, and treatment planning.

ABBREVIATIONS: AUC ¼ area under the curve; EP ¼ ependymoma; GLCM ¼ gray-level co-occurrence matrix; HGG ¼ high-grade glioma; LR ¼ logistic
regression; NPV ¼ negative predictive value; PNET ¼ primitive neuroectodermal tumor; PPV ¼ positive predictive value; WHO ¼ World Health Organization;
XGB ¼ extreme gradient boosting; LASSO ¼ least absolute shrinkage and selection operator

Pediatric supratentorial embryonal tumors, high-grade glio-
mas (HGGs), and ependymomas (EPs) can be difficult to

differentiate by both imaging and histopathology because of
overlapping features.1,2 Given the vastly different treatment
approaches and prognoses, accurate diagnosis of these entities
is extremely important; however, it requires advanced immu-
nohistochemistry and molecular analyses, which have substan-
tial practical barriers of availability, timeliness, and cost.3-5

Embryonal tumors of the CNS are highly malignant, undiffer-
entiated, or poorly differentiated tumors of neuroepithelial ori-
gin, a category that has continuously evolved during the past few
decades, reflecting an improving understanding of tumor biol-
ogy.1,6 The nomenclature of supratentorial HGG has also
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changed across the years, including major updates in the 2021
World Health Organization Classification of CNS Tumors
(WHO CNS5), with separation of “adult-type” and “pediatric-
type” gliomas and further subgrouping based on specific genetic
mutations. The term “anaplastic astrocytoma” has been discon-
tinued, and “glioblastoma” is no longer used in the pediatric con-
text.7 Supratentorial EPs have been shown to be biologically
distinct from the more common infratentorial counterparts, with
different cells of origin and specific genetic mutations.8,9

Supratentorial embryonal tumors, HGGs, and EPs all demon-
strate aggressive behavior, and routine histopathology may be
unreliable in accurately differentiating these tumor types.

Recent advances in machine learning and computer vision in
medicine offer a new potential for precision in oncology whether
it is classification of the tumor subgroup or prognosis. For exam-
ple, feature extraction, such as radiomics, enables mining of high-
dimensional, quantitative image features that facilitate data-driven,
predictive modeling. With such approaches, computational algo-
rithms assign probabilities for diagnoses based on quantitative
analyses of tumor voxels on imaging.10,11 Prior studies have used
various machine learning approaches to separate the different pos-
terior fossa tumors in children, to predict the molecular subtypes
for pediatric medulloblastomas and adult high-grade gliomas, and
for development of prognostic biomarkers for various tumors.12-19

Here, we present a large multi-institutional cohort of pediatric
supratentorial tumors for MR imaging–based radiomics analysis,
in an attempt to identify quantitative imaging features and radio-
mic profiles that can help distinguish these tumors types.

MATERIALS AND METHODS
Study Population
We performed a multi-institutional, retrospective study after
institutional review board approval (No. 51059) at participating
institutions (Online Supplemental Data) with a waiver of consent.
Stanford served as the host institution and executed site-specific
data-use agreements. The inclusion criteria were consecutive
patients with pathologically confirmed supratentorial embryonal
tumors, HGGs, and EPs spanning 2003–2021, nineteen years of
age or younger, and with preoperative MR imaging that included
both axial T2-weighted and gadolinium-enhanced T1-weighted
sequences. For this retrospective study, the original tumor type
assignments were based on the older WHO classifications. The
HGG group included anaplastic astrocytomas (grade III) and
glioblastomas (grade IV); both terms have been discontinued in
the 2021 WHO Classification. All supratentorial EPs, regardless
of the pathologic grade (grade II or III), were included in the
study. We excluded patients if the MR imaging was nondiagnos-
tic or had artifacts.

Imaging Techniques
MR imaging brain scans were performed on 1.5 or 3T MR imag-
ing scanners across centers using the following vendors: GE
Healthcare, Siemens, Philips Healthcare, and Toshiba Canon
Medical Systems. The T2-MR imaging sequence parameters were
the following: T2 TSE clear/sensitivity encoding, T2 FSE, T2
PROPELLER, T2 BLADE (Siemens), T2 DRIVE sensitivity
encoding (TR/TE = 2475.6–9622.24/80–146.048 ms); section

thickness = 1–5mm, 0.5- or 1-mm skip; matrix ranges = 224–
1024 � 256–1024. T1-MR imaging sequences comprised T1
MPRAGE, T1 axial MRI 3D brain volume, T1 fast-spoiled gradi-
ent recalled, T1 echo-spoiled gradient echo, and T1 spin-echo
(section thickness = 0.8–1.2mm; matrix = 256–512�256–512).

Feature Extraction and Reduction
One blinded neuroradiology attending physician (reader 1, K.W.Y.)
independently segmented the volumetric whole-tumor boundary
on both T2-MR imaging and T1-MR imaging, inclusive of solid,
cystic, and hemorrhagic components, excluding perilesional edema.
The T2-MR imaging was used as the baseline for tumor segmenta-
tion, and the ROI was manually overlaid onto the T1-MR imaging.
A second blinded neuroradiology attending physician (reader 2, A.
J.) confirmed tumor boundary delineation. Normalization was per-
formed by normalizing the intensities by centering at the mean
(SD), with a scaling factor of 100. Isotropic voxel resampling was
performed to 1� 1� 1 mm3. A bin width of 10 was used for gray-
level discretization in both normalized MR images. Both the nor-
malization and resampling elements are further detailed in the
Online Supplemental Data. From each tumor volume, we extracted
1800 (900 each from T2-MR imaging and T1-MR imaging) Image
Biomarker Standardization Initiative–based20,21 PyRadiomics features
(2.2.0.post71gac7458e; https://aim.hms.harvard.edu/pyradiomics)
using the Quantitative Image Feature Pipeline (Online Supple-
mental Data).22 Extracted features underwent sparse regression
analysis by a least absolute shrinkage and selection operator
(LASSO) on RStudio 1.2.5033 (https://www.rstudio.com/products/
rstudio/download/; Online Supplemental Data). We conducted
feature selection from the entire cohort given our relatively small
data set size and addressed this potential limitation by performing
internal cross-validated LASSO (glmnet package; https://glmnet.
stanford.edu/articles/glmnet.html) to obviate overfitting.

Binary Classifier Training and Testing
For each binary classifier model, we first conducted feature reduc-
tion using the extracted feature set and clinical variables (age at di-
agnosis and sex) as input. The corresponding reduced feature set
was then submitted to train 6 candidate classifiers to identify the
best-performing algorithm. The 6 candidate classifiers included
support vector machine, logistic regression (LR), k-nearest neigh-
bor, random forest, extreme gradient boosting (XGB), and neural
net. Training and test sets were randomly allocated from the total
cohort in a 75:25 ratio. The training cohort underwent resampling
to correct for sample imbalance. Embryonal tumors were desig-
nated as the positive class in classifiers containing such pathologies.
For the classifier between EP and HGG, EP was designated as the
positive class. Optimal classifier parameters were estimated by a
grid search (Online Supplemental Data). The relative influences of
imaging features were calculated for the optimal classifiers, namely,
feature coefficients for LR and percentage gain for tree-based
classifiers.

Single-Stage Multiclass Classifier Model
To compare the performance of multiple individual binary primary
models (embryonal tumor versus HGG; embryonal tumor versus
EP; EP versus HGG) with that of a single multiclass model, we used
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the same 6 candidate classifiers to perform amulticlass classification
across the 3 tumor groups: embryonal tumor, HGG, and EP.

Statistical Analysis
A P value , .05 was considered statistically significant for all
analyses. We calculated sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and area under the
curve (AUC) for each classifier. The accuracy confidence interval
was compared with the no-information rate, which was calcu-
lated from the prevalence of the more populous class within a bi-
nary pairing (Wald statistic). Confidence intervals were obtained
by bootstrapping the test sets for 2000 random samples. Classifier
development was performed using Python 3.8.5 (https://www.
python.org/downloads/release/python-385/). Feature reduction
and statistics were calculated with RStudio 1.2.503.

RESULTS
Patient Cohort
Of the 271 patients who were shared by participating sites, 231
met the final inclusion criteria. Reasons for exclusion were lack of
either axial plane T2-MR imaging or T1-MR imaging or artifacts.
A few patients were excluded due to infratentorial tumor loca-
tion. There were 50 (21.6%) embryonal tumors, 127 (55.0%)
HGGs, and 54 (23.4%) EPs, with pathologic subtypes as detailed

in the Online Supplemental Data. The mean ages at diagnosis
were 69.3, 138.1, and 87.3months, respectively.

Embryonal Tumor and High-Grade Glioma Classifier
The subsequent classifier for embryonal tumor and HGG identi-
fied 23 features (Online Supplemental Data). These features
entailed 1 clinical feature (age), 9 from T1-MR imaging, and 13
from T2-MR imaging, including 6 first-order, 2 shape, and 14
textural features (8 gray-level co-occurrence matrix [GLCM], 5
gray-level size zone, 1 gray-level run length matrix). Among the 6
classifier models, LR showed highest performance (AUC = 0.98)
(Online Supplemental Data) with a sensitivity, specificity, PPV,
NPV, and accuracy of 0.85, 0.91, 0.79, 0.94, and 0.89, respectively.
The top 3 relevant features included age, T2-cluster shade
(GLCM), and T2-mean (first-order intensity, Fig 1, and Online
Supplemental Data). Accuracy was significantly higher than the
no-information rate (P, .001). Metrics from all 6 classifier mod-
els are provided in the Online Supplemental Data.

Embryonal Tumor and Ependymoma Classifier
In the binary classifier for embryonal tumor versus EP, LASSO
regression identified 4 relevant Image Biomarker Standardization
Initiative features, with 2 from T1-MR imaging and 2 from T2-MR
imaging (Online Supplemental Data), including 3 first-order features
and 1 textural feature (1 GLCM). Among the 6 classifier models,

FIG 1. Density plots of the top 3 features, including age at diagnosis (A), T2-Cluster Shade (B), and T1-Mean Intensity (C). D, Bar plot measuring
the relative influence as calculated by LR of the top 10 reduced features for the binary classifier trained to distinguish embryonal tumors and
high-grade gliomas.
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XGB had the best performance (AUC = 0.82) (Online Supplemental
Data). The top 3 relevant features included T2-kurtosis (first-order),
T1-informational measure of correlation (GLCM), and T1-skewness
(first-order, Fig 2 and Online Supplemental Data). Sensitivity, speci-
ficity, PPV, NPV, and accuracy were 0.93, 0.69, 0.76, 0.90, 0.81,
respectively. Accuracy was statistically greater than the no-informa-
tion rate (P= .001). Metrics from all 6 classifier models are provided
in Online Supplemental Data.

Ependymoma and High-Grade Glioma Classifier
Finally, a classifier performed for HGG and EP identified 35 fea-
tures (Online Supplemental Data), including 1 clinical feature, 16
from T1-MR imaging, and 18 from T2-MR imaging, including 8
first-order, 1 shape, and 25 textural features (11 GLCM, 10 gray-
level size zones, 4 gray-level run length matrix). Among the 6
classifier models, neural net showed the highest performance
(AUC = 0.96) (Online Supplemental Data) with a sensitivity,
specificity, PPV, NPV, and accuracy of 0.82, 0.94, 0.82, 0.94, and
0.91, respectively. The top 3 relevant features included T1-mean
(first-order intensity), T1-cluster shade (GLCM), and T2-maxi-
mal correlation coefficient (GLCM, Fig 3, and Online
Supplemental Data). Accuracy was statistically higher than the
no-information rate (P, .001). Metrics from all 6 classifier mod-
els are provided in the Online Supplemental Data.

Single-Stage Embryonal Tumor, High-Grade Glioma,
Ependymoma Classifier
The performance of this multiclass classifier was inferior to the
above-described binary classifiers, and the metrics stemming
from this model are included in the Online Supplemental Data.

DISCUSSION
In this multi-institutional study, we constructed machine learn-
ing classifiers to identify MR imaging–based radiomics pheno-
types that distinguish supratentorial embryonal tumors, HGG,
and EP. Our study represents the largest study to date on imaging
of pediatric supratentorial tumors and the first one to apply
radiomics.

Histopathologic features of embryonal tumors, HGG, and EP
can overlap and require immunohistochemistry and/or molecular
profiling for accurate diagnosis. Also, recent clinical trials have
reported that rates of discordance between central and site patho-
logic review range between 28% and 38%, further highlighting the
difficulties in accurate pathologic diagnosis.1,4,8,23 The diagnosis of
embryonal tumors from other entities is particularly challenging. In
the past, the histologically diagnosed category of primitive neuroec-
todermal tumors (CNS-PNET) was considered synonymous with
embryonal tumors. However, molecular profiling using genome-

FIG 2. Density plots of the top 3 features, including T2-kurtosis (A), T1-skewness (B), and T1-information measure of correlation (C). D, Bar plot
measuring the relative influence as calculated by XGB of the 4 reduced features for the binary classifier trained to distinguish embryonal tumor
and ependymoma.
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wide DNAmethylation of CNS-PNETs has revealed that this group
comprises disparate entities including embryonal tumors as well as
nonembryonal tumors such as HGG and EP, thereby leading to dis-
continuation of the term CNS-PNET in the WHO Classification.1,2

The supratentorial embryonal tumors include a broad group
termed “CNS embryonal tumors (not otherwise specified)” and
some more specific entities like embryonal tumors with multilay-
ered rosettes.6 In addition to these, supratentorial embryonal
tumors have traditionally included atypical teratoid/rhabdoid
tumors and pineoblastomas.6,8 Supratentorial embryonal tumors
represent approximately 15% of CNS neoplasms in children and
are biologically distinct frommedulloblastomas.24

High-grade gliomas constitute 8%–12% of all pediatric CNS
neoplasms, and one-third of these are supratentorial.3,25 The
2021 WHO CNS5 places adult and pediatric HGG in separate
categories, which are further subdivided on the basis of a complex
spectrum of genomic abnormalities.7 In contrast to adult-type
HGGs, pediatric HGGs are typically IDH wild-type and demon-
strate histone mutations in more than half the cases.26

Ependymomas constitute 10% of all primary CNS neoplasms in
children, and 40% are supratentorial with most in a parenchymal
location.24,27,28 Supratentorial EPs are now identified as geneti-
cally distinct from infratentorial and spinal EPs; WHO CNS5 has
introduced genetically defined subgroups of ZFTA fusion-posi-
tive and YAP1 fusion-positive for supratentorial EPs, with the
former demonstrating more aggressive clinical behavior.7,8

Histopathologic grading of EPs has been controversial with
regard to its reproducibility and clinical significance. Although
EPs can be either grade II or III, the clinical outcome is poorly
correlated with tumor grade; therefore, all EPs regardless of the
grade were included in this study.29

There are only a few published studies on the imaging appear-
ance of pediatric supratentorial high-grade tumors.27,30-34 The only
study comparing the imaging features of supratentorial embryonal
tumors with other high-grade tumors (HGG and EP) concluded
that it is not possible to distinguish these entities by conventional
MR imaging.30 A prior report compared the MR imaging findings
of CNS-PNET not otherwise specified with ependymoblastomas
and ependymomas, and although the authors found some differen-
ces on imaging, their conclusion was that precise distinction is not
feasible.35 All of these high-grade tumors have overlapping imaging
appearances and typically present as large, heterogeneous, diffu-
sion-restricting, hemispheric, or ventricular masses with variable
cystic and necrotic changes. Enhancement is usually present but
can vary in extent and intensity.24

Our radiomic models demonstrated high predictive accuracy
for each of the embryonal tumor versus HGG, embryonal tumor
versus EP, and HGG versus EP classifiers. The final model for
embryonal tumor versus HGG selected age as one of the domi-
nant contributors, which is congruent with the reported propen-
sity of embryonal tumors to occur in younger children, and
HGG, in the adolescent age group.24 The other 2 models selected

FIG 3. Density plots of the top 3 features, including T1-mean (A), T1-cluster shade (B), and T2-maximal correlation coefficient (C). D, Bar plot
measuring the relative influence as calculated by LR of the top 10 reduced features for the binary classifier trained to distinguish ependymomas
and high-grade gliomas.
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purely MR imaging–based radiomic features. One of the advan-
tages of the radiomics technique is that it allows identification of
specific computational features that drive model prediction, thus
offering some transparency compared with the “black box” na-
ture of deep learning. For the embryonal tumor-versus-HGG
classifier, the embryonal tumors demonstrated more balanced T2
voxel intensities around the mean intensity and were overall
brighter on T1 postcontrast imaging (Fig 1). For the embryonal
tumor-versus-EP classifier, the embryonal tumors demonstrated
overall darker voxel intensities on T2, while EPs had more homo-
geneous texture on T1 postcontrast images (Fig 2). The perform-
ance of the embryonal tumor-versus-HGG model was stronger
compared with the embryonal tumor-versus-EP model. For the
HGG-versus-EP classifier, EPs were overall brighter with more
balanced signal intensities around the mean on T1 postcontrast
images and had a more “complex” texture involving a greater
proportion of brighter intensities on T2-weighted images (Fig 3).

Examples of model-derived probability output are shown on
test cohorts of supratentorial embryonal tumors, EP, and HGG
that did not participate in training (Fig 4), showing strong dis-
crimination for these binary classifiers. Due to overlap in macro-
scopic features of these malignant supratentorial tumors (eg, a
wide range in size, morphology, and enhancement/intensity fea-
tures), independent binary classifiers that specifically targeted fea-
ture separation for embryonal tumor versus HGG, embryonal
tumor versus EP, and HGG versus EP were found predictive over
a single multiclass classifier.

We note several limitations, including the small cohort size of
each tumor type related to its relative rarity. Nevertheless, our

cohort represents the largest imaging study of supratentorial
tumors to date with data pooled frommultiple institutions. There
were institutional differences in MR imaging acquisition techni-
ques, sequence availability, and image quality; however, we iden-
tified discriminating features that are retained despite diverse
imaging protocols and vendors that may facilitate future general-
izability and usability across centers. While the use of an inde-
pendent institution outside of training would be desirable to
show model generalization, this was not feasible due to uneven
distribution of the tumor types across institutions. A future
larger cohort study could build on our pilot results and further
examine the robustness of radiomics-based separation of these
supratentorial tumors. Additional imaging sequences such
ADC and DWI, which may have predictive information, were
excluded to preserve a robust sample size. We extracted radio-
mics features from isolated tumors and thus did not incorporate
spatial relationship. Future design could consider combining
radiomics and deep learning approaches that can intake whole-
brain MR imaging for feature extraction and thereby assimilate
tumor spatial features. While we performed intensity normaliza-
tion and isotropic voxel resample, incorporation of other pre-
processing steps would be desirable to further enhance the
reproducibility and generalization of MR imaging–based radio-
mics classification.

A common limitation of radiomics lies in replicability when
obscure algorithms are used for feature extraction. Thus, we used
the publicly available PyRadiomics package to compute features,
as defined by the Imaging Biomarker Standardization Initiative,
for future reproducibility.20

FIG 4. Examples of model-derived probability output are shown on test cohorts of supratentorial embryonal tumors (EMB), EP, and HGG that
did not participate in training. Due to overlap in macroscopic features of these malignant supratentorial tumors (eg, a wide range in size, mor-
phology, and enhancement/intensity features), independent binary classifiers that specifically targeted feature separation for EMB versus EP (A,
XGB), EMB versus HGG (B, LR), and HGG versus EP (C, Neural network [NN]) were found predictive over a single multiclass classifier. Examples of
the same EMB tumors that were separately submitted into XGB and LR models are shown (asterisk) and show strong EMB discrimination against
EP and HGG, respectively. In 1 example, the same EP tumor could be distinguished from EMB (yellow arrow) but was not predictive against HGG
(gray arrow). ATRT indicates atypical teratoid/rhabdoid tumors; ETMR, embryonal tumor with multi-layered rosettes; NB, CNS neuroblastoma;
NOS, not otherwise specified.
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CONCLUSIONS
Accurate pathologic diagnosis of supratentorial tumors often
requires advanced immunohistochemistry and molecular analy-
ses. These techniques are not readily available outside a handful
of brain tumor centers and can be prohibitively expensive. Also,
final diagnosis may take multiple weeks and is often not avail-
able for initial surgical and treatment planning. Conventional
MR imaging is also of limited utility in distinguishing these
tumors. Our MR imaging–based radiomic phenotypes demon-
strated high accuracy and provided a rapid, readily available
tool that can help provide a more accurate imaging diagnosis or
a narrower differential diagnosis. This result in conjunction
with initial histopathology can be more effective in guiding the
surgery, treatment planning, and prognostication and can
improve the overall outcomes of these patients. In recent years,
standardization of quantitative image features by the radiology
and bioinformatics community now enables potential deploy-
ment of such image-derived variables with fidelity in the clinical
environment across centers. Pediatric embryonal tumors,
HGGs, and EPs also have a wide and complex spectrum of
genomic features involving several oncogenic pathways that can
further affect the therapeutic strategies, and noninvasive dis-
tinction among these would be the next frontier for machine
learning–based imaging techniques.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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