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REVIEW ARTICLE

PET/MRI in Pediatric Neuroimaging:
Primer for Clinical Practice

C. Pedersen, M. Aboian, J.E. McConathy, H. Daldrup-Link, and A.M. Franceschi

ABSTRACT

SUMMARY:Modern pediatric imaging seeks to provide not only exceptional anatomic detail but also physiologic and metabolic in-
formation of the pathology in question with as little radiation penalty as possible. Hybrid PET/MR imaging combines exquisite soft-
tissue information obtained by MR imaging with functional information provided by PET, including metabolic markers, receptor
binding, perfusion, and neurotransmitter release data. In pediatric neuro-oncology, PET/MR imaging is, in many ways, ideal for fol-
low-up compared with PET/CT, given the superiority of MR imaging in neuroimaging compared with CT and the lower radiation
dose, which is relevant in serial imaging and long-term follow-up of pediatric patients. In addition, although MR imaging is the main
imaging technique for the evaluation of spinal pathology, PET/MR imaging may provide useful information in several clinical scenar-
ios, including tumor staging and follow-up, treatment response assessment of spinal malignancies, and vertebral osteomyelitis. This
review article covers neuropediatric applications of PET/MR imaging in addition to considerations regarding radiopharmaceuticals,
imaging protocols, and current challenges to clinical implementation.

ABBREVIATIONS: DOPA ¼ dioxyphenylalanine; DOTATATE ¼ [tetrazetan-D-Phe1,Tyr3]-octreotate; FET ¼ fluoroethyltyrosine; mFBG ¼ meta-fluorobenzyl-
guanidine; MIBG ¼ metaiodobenzylguanidine; LCH ¼ Langerhans cell histiocytosis; max ¼ maximum; MET ¼ methionine; SUV ¼ standard uptake value

Serial imaging and radiation dose reduction should remain
balanced in pediatric imaging. Repeat PET/CTs, especially in

pediatric neuro-oncology, result in a considerable cumulative
radiation dose and may increase the risk of secondary cancer.1-3

The risk of radiation-induced malignancy is increased at expo-
sures of .50–100 mSv.2 A retrospective review of 78 pediatric
patients found that the average cumulative dose from PET/CT
during a 5-year period amounted to 78.9 mSV.3 Meanwhile,
reduction in the cumulative dose by PET/MR imaging has been
reported to be as high as 50%–70% in pediatric lymphoma.4-6

Further dose reduction may be achieved by lowering radiophar-
maceutical doses with artificial intelligence–based algorithms,
which is an area of active research and product development.7,8

Hybrid PET/MR imaging is particularly promising in pediatric
neuroimaging because it allows functional and soft-tissue characteri-
zation with a low radiation dose and comparable agreement with
PET/CT reported in several recent studies.5,6,9 Unlike PET applica-
tions in body imaging, the CT component of brain PET/CT typically
provides little clinically useful information beyond attenuation cor-
rection, but it does contribute to the radiation dose. PET can be used
to differentiate high-grade from low-grade tumors at the initial
work-up, provide prognosis for patient progression-free survival and
overall survival, identify the site for optimal biopsy, and determine
the extent of tumor to optimize resection and radiation therapy.10

PET is also useful to evaluate tumor recurrence posttreatment in the
setting of equivocal MR imaging findings and to detect transforma-
tion of tumor to a higher-grade malignancy.10 MR imaging
allows DWI and FLAIR sequences, which are valuable in brain
tumor assessment, and also whole-body evaluation of meta-
static disease.11-13 MR imaging–based attenuation correction
methods for PET are more complex than for CT but are possi-
ble and typically involve tissue-segmentation techniques.14

PET/MR imaging can be performed with a sequential or syn-
chronous system. In a synchronous system, the solid-state PET
detectors are located between the body and gradient coils in the
3T MR imaging gantry, which allows truly synchronous data ac-
quisition. In a sequential system, PET and MR imaging are per-
formed separately with transportation of the patient between
scanners. A sequential system is technically easier to achieve because
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most US hospitals currently own separate MR imaging and PET
machines, but 1 major drawback is the asynchronous nature of the
scans, potentially giving rise to misregistration artifacts, longer scan
times, and longer sedation requirements.15,16 Therefore, a synchro-
nous PET/MR imaging system is generally preferable in pediatric
neuroimaging.4

Reduction in sedation need and sedation time is best achieved
by decreasing the overall MR imaging scan time, eg, by specifically
tailored protocols and sequence design.17,18 In 1 study, the use of a
rapid brain-tailored protocol in 1308 pediatric emergency depart-
ment encounters decreased head CT use by .20% without a
missed diagnosis on follow-up imaging.19 Sequence design may be
optimized with SyntheticMR (https://syntheticmr.com/company/),
which allows reconstruction of multiple sequences for qualitative
and quantitative analysis from a single acquisition20 and has been
applied to multiple disease processes including cancer, neurodege-
nerative disorders, and stroke.21,22

Combining PET and MR imaging results in imaging time
reduction, decreases sedation time and need, and, overall, has the
potential to increase throughput of scans.4 Cost analysis of sav-
ings from increased throughput of patients remains an area of
future investigation.

PET/MR Imaging in Pediatric Neuro-Oncology
CNS cancer is the leading cause of death in children and adoles-
cents.23 Standard-of-care treatment for pediatric brain tumors is
maximum safe resection, targeted radiation therapy, and chemo-
therapy. PET may help differentiate high-grade from low-grade

tumors, prognosticate progression-
free and overall survival, identify an
optimal biopsy site, and determine
tumor extent to optimize resection
and radiation therapy.10 Postoperative
MR imaging may be equivocal or miss
small residual lesions. In this setting,
PET can be used to evaluate tumor re-
currence and detect transformation to
a higher tumor grade.

[18F] FDG-PET. FDG is a positron-emit-
ting analog of glucose that uses glucose
transporters to transport labeled FDG
into the cells. Once the FDG is inside
the cell, it gets phosphorylated by hexo-
kinase, resulting in intracellular reten-
tion.24 This method allows imaging of
cellular glucose uptake and thus allows
for assessment of cellular glucosemetab-
olism. A higher level of FDG uptake has
been shown to correlate with a higher
tumor grade and lead to survival predic-
tion in primary brain tumors such as
gliomas.10 Disadvantages of FDG-PET
include high normal brain parenchymal
uptake, which may lead to poor visual-
ization of low-grade tumors, and limita-

tions in tumor-margin assessment (Figure). Prominent FDG uptake
can also be seen in inflammatory lesions, so careful multimodal
lesion evaluation is recommended.25 FDG-PET is particularly valua-
ble when differentiating posttreatment changes from tumor recur-
rence in the clinical setting because the former is not expected to be
FDG-avid (Online Supplemental Data).24

Amino Acid PET. Amino acids are critical substrates in cellular
metabolic pathways for synthesis of proteins and nucleotides and
generation of adenosine triphosphate, all essential for cell func-
tion and growth. Up-regulation of amino acid transporters is an
early step in carcinogenesis.26,27 The main advantage of amino
acid–based tracer imaging is very low background uptake by nor-
mal brain parenchyma, allowing better lesion detection and
improved tumor-border visualization. Natural and modified
amino acids have been used to study amino acid metabolism of
tumors, with the most commonly used tracers including 11C-me-
thionine (MET), [18F] dioxyphenylalanine (DOPA), [18F] fluo-
roethyltyrosine ([18F] FET), and [18F] fluciclovine (Online
Supplemental Data).26,28,29 11C-MET is a natural amino acid la-
beled with a carbon-11 radionuclide that has a very short half-life
of 20minutes and is, thus, limited to centers with an on-site cy-
clotron. The main benefit of 11C-MET in pediatrics is the low
radiation dose that is administered, but the inconvenience of a
short half-life outweighs the benefits. [18F] FET and [18F] DOPA
are modified amino acids that use the same pathway as natural
amino acids but are labeled with [18F], which has led to more
widespread use due to a longer half-life (110minutes). Both trac-
ers can be analyzed on static imaging, but interpretation of

FIGURE. Diffuse astrocytoma in 4-year-old child demonstrates a nonenhancing FLAIR hyperin-
tense mass involving the gray and white matter of the left frontal lobe (A and B). There is no evi-
dence of reduced diffusion or hypointense signal on ADC (C and D). The inferior aspect of the
lesion demonstrates a subtle decrease in FDG uptake compared with the contralateral side (E),
while the superior portion demonstrates relative hypermetabolism on FDG-PET (F).
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dynamic PET is more established for [18F] FET.30,31 One of the
main applications of [18F] FET-PET in pediatric neuro-oncology is
the definition of residual tumor after resection. In a study evaluat-
ing residual brain tumors in 27 pediatric patients, [18F] FET-PET
found at least 1 residual tumor not clearly identified on MR imag-
ing, which significantly altered management.32 There are also
promising results for the differentiation of radiation necrosis from
tumor recurrence and the definition of tumor hypermetabolic
regions, though most of the studies are performed in adults.33

[18F] FDG- and 11C-MET-PET were compared in 27 chil-
dren with newly diagnosed brain tumors with diverse histol-
ogy.34 Twenty-two of 23 patients had increased uptake on
MET-PET. High-grade tumors demonstrated a significantly
elevated mean standard uptake value (SUVmean) and maxi-
mum SUV (SUVmax) compared with low-grade tumors.
When the same patients were imaged with FDG-PET, 52% of
tumors were hypermetabolic; 38%, eumetabolic; and 10%,
hypometabolic. Because FDG uptake was higher in high-grade
tumors, it was proposed that FDG-PET may provide informa-
tion on tumor grade, while MET-PET provides superior infor-
mation on tumor location and border delineation.

An emerging amino acid PET tracer in pediatrics [18F] fluci-
clovine PET, also known as Axumin PET, is an FDA-approved
tracer for imaging metastatic prostate cancer, but it is also show-
ing promising results in neuro-oncology.29,35-38 It has lower back-
ground uptake compared with 11C-MET and is transported by
both L-type amino acid transporter 1 and system alanine-serine-
cysteine amino acid transporter-2 into the cell. Upcoming trials
in pediatric brain tumors will elucidate the role and applications
of this tracer in clinical neuro-oncology.

Head and Neck Tumors
Orbital Malignancies. Hybrid PET/MR imaging in pediatric orbital
disease is still under evaluation. Orbital involvement by lymphoma
and other lymphoproliferative malignancies can be evaluated using
[18F] FDG-PET, while malignancies of the optic nerves can be eval-
uated by both [18F] FDG and amino acid tracers.39 Uveal melanoma
has been described as FDG-avid, while intraorbital retinoblastoma
demonstrates heterogeneous FDG avidity.39,40 Meningiomas may
originate along the optic nerve sheath or extend into the orbit
through the sphenoid bone or foramen rotundum and can be eval-
uated using somatostatin receptor analogs such as gallium-68 [tetra-
zetan-D-Phe1,Tyr3]-octreotate (DOTATATE).41

Rhabdomyosarcoma in the Head and Neck. Rhabdomyosarcoma
in the head and neck region requires multimodal evaluation. The
primary tumor is best evaluated with high-resolution MR imag-
ing including noncontrast and non-fat-suppressed T1 and post-
contrast T1 while [18F] FDG-PET can help delineate metastases
and detect tumor recurrence (Online Supplemental Data). Recent
literature indicates that FDG-PET is superior to conventional
imaging in characterization of metastatic lesions and prediction
of treatment response and patient outcomes.42,43 Notably, chest
CT is currently still required to evaluate pulmonary metastases in
these patients. While MR imaging and PET are making progress,
the sensitivity of CT for pulmonary metastases remains superior.

Neuroendocrine Malignancies. Neuroblastoma originates in
primitive neural crest cells of the sympathetic nervous system and
is the most common solid extracranial tumor of childhood. Most
cases are diagnosed before 5 years of age and up to 50% of patients
present with metastatic disease, commonly involving lymph nodes,
bone, liver, and skin (Online Supplemental Data).44

Iodine-123-metaiodobenzylguanidine (123I-MIBG) imaging
is based on iodine accumulation in tumor cells and is the pri-
mary imaging technique for staging and treatment-response
assessment and provides the foundation for targeted therapy
with 131I-MIBG.45,46 23I-MIBG SPECT and SPECT/CT can be
acquired advantageously to assist with tracer-uptake identifi-
cation. In 1 meta-analysis, 123I-MIBG had lower per-lesion ac-
curacy but was more specific compared with [18F] FDG-PET.
MR imaging is a valuable for initial local staging and treatment
response and lends itself well to the multivariate presentations
of neuroblastoma. The sensitivity of MR imaging was superior
to that of MIBG in 1 study, though less specific.47 Whole-body
MR imaging demonstrated good sensitivity for lymph node
metastases, though with lower specificity compared with [18F]
FDG-PET, partly due to difficulty in distinguishing treated
and viable disease.48

More recently, 124I-MIBG-PET has demonstrated a favorable
dosimetry profile and allows high-resolution images with
increased accuracy for the detection of metastatic lesions in the
head, neck, and spine compared with conventional 123I-MIBG
SPECT in several studies.49,50

[18F] FDG-PET is generally preferred in non-MIBG-avid neu-
roblastomas, in aggressive and dedifferentiated tumors with loss
of iodine uptake, and when high background activity complicates
the evaluation of spinal involvement.51,52 FDG-PET has good ac-
curacy in metastatic lesion detection compared with 123I and 131I-
MIBG scans.11,43,44 Novel PET tracers such as [18F] DOPA have
shown high accuracy and good agreement with MIBG in patients
with relapse.53-55 [18F] meta-fluorobenzylguanidine ([18F]
mFBG) has been developed as a radiotracer that can provide
MIBG-equivalent whole-body staging on PET/MR imaging.56,57

Thus, [18F] mFBG PET/MR imaging may combine local and
whole-body staging in 1 session, which is particularly helpful in
pediatric patients who typically require anesthesia for medical
imaging.

Additional imaging agents for neuroblastoma include 68Ga-
DOTATATE, which is a somatostatin receptor analog approved
for the detection of neuroendocrine tumors expressing somatosta-
tin receptors such as neuroblastoma.58 Somatostatin receptor ana-
logs may be combined with peptide receptor radionuclide therapy
for refractory neuroblastoma, eg, 177Lu-DOTATATE, because the
tumor expresses somatostatin receptors, which allow select
targeting.59

Thyroid Cancer. Thyroid nodules are less common in children
than in adults but carry a higher risk of malignancy.60 [18F] FDG-
PET is not used routinely for thyroid nodules but may be useful
in staging non-radioiodine-avid metastatic disease. MR imaging
of the neck in this setting helps evaluate the thyroid resection bed
for local recurrence and depicts anatomically complex regions
such as the skull base and spine.60
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PET/MR Imaging in Pediatric Spine Imaging
[18F] FDG-PET may provide useful information in treatment-
response assessment of spinal malignancies, tumor staging, and
follow-up. The role of FDG-PET in neuroblastomas was covered
above (Online Supplemental Data). Nononcologic spinal imaging
applications of PET/MR imaging include Langerhans cell histio-
cyt-osis (LCH) and spinal infection. Furthermore, [18F] DOPA
may detect hormonally active beta cells in patients with congenital
hyperinsulinism.

Pediatric Spinal Malignancy. Astrocytomas are the most com-
mon primary intramedullary tumor in children and young adults.
Most are slow-growing, low-grade tumors, while about 10%–15%
are high-grade and may demonstrate elevated tracer uptake on
[18F]-FDG- and 11C-MET-PET. The classic imaging presentation
is an eccentrically located infiltrating tumor with fusiform spinal
cord expansion, variable enhancement, and often an associated
cyst or syrinx. Ependymomas arise from ependymal cells of the
central canal and typically present as an enhancing mass with sur-
rounding edema, associated cysts, and hemorrhage. Due to their
central location, even a small ependymoma may cause partial
obstruction of the central canal and lead to formation of a syrinx.

Ewing sarcoma is the second most common primary malig-
nant osseous tumor and typically occurs between 10 and 20 years
of age. Primary vertebral Ewing sarcoma may present as either a
lytic, sclerotic, or mixed lytic and sclerotic mass and may involve
any part of the spine. Paravertebral Ewing sarcoma may extend
directly through the neuroforamina, and spinal invasion is com-
mon.61 Necrosis, cystic change, hemorrhage, and robust enhance-
ment are common imaging findings. These tumors demonstrate
avid tracer uptake on all 3 phases of technetium Tc99m methyl-
ene diphosphonate bone scans. [18F] FDG-PET may be used for
staging purposes and to evaluate residual disease following treat-
ment (Online Supplemental Data).

Sacrococcygeal teratomas are the most common congenital tu-
mor in the fetus and neonate and can be classified into 4 types
depending on their location within and outside the pelvis. They are
often large tumors composed of different tissues with a variable
appearance on T1, T2, and postcontrast images. About a third are
immature or malignant. [18F] FDG-PET may aid in staging and
posttreatment follow-up of malignant sacrococcygeal tumors.

Lymphoma
Lymphoma is one of the most common indications for PET imaging
in pediatric oncology (Online Supplemental Data). The Deauville or
Lugano criteria are endorsed by the Children’s Oncology Group and
rely on semiquantitative measurements of glucose metabolism,
which is helpful to avoid radiation therapy of non-FDG-avid resid-
ual soft-tissue masses.4 Current clinical practice includes PET/CT
before, during, and after initiation of therapy, with a resultant high
cumulative radiation dose. Meanwhile, PET/MR imaging provides
excellent soft-tissue contrast and is either equivalent or superior for
malignant lymph node detection.4,62,63 There is a high correlation
between FDG-PET/MR imaging tumor SUV compared with PET/
CT, though 1 study reported systematically lower SUVs on PET/MR
imaging compared with PET/CT.4,63,64 The greatest benefit of PET/
MR imaging in lymphoma is radiation-dose reduction.6,64 PET/MR

imaging for lymphoma in children is typically acquired as a whole-
body scan from head to toe.13

Langerhans Cell Histiocytosis
LCH is a proliferative process of histiocytes in children and
young adults with a predilection for the vertebral bodies, which
may result in vertebral body collapse (vertebra plana). The prog-
nosis depends on disease extension, and [18F] FDG-PET is used
to evaluate metastatic disease and residual tumor following resec-
tion (Online Supplemental Data).65

Vertebral Osteomyelitis
Clinical manifestations of osteomyelitis are diverse and depend on
location, causative microorganism, immune status, comorbidities of
the host, and route of contamination. Conventional radiographs are
nonspecific and only show late findings of osteomyelitis. CT pro-
vides excellent resolution and good osseous evaluation but is limited
in the evaluation of soft tissues, which are commonly involved in os-
teomyelitis. Three-phase bone scintigraphy is based on hydroxyapa-
tite deposition and is sensitive for detection of osteomyelitis (83%),
though not specific (45%).66 A leukocyte (white blood cell) scan is
based on leukocyte recruitment and is more specific (88%) with rea-
sonable sensitivity (73%) but requires cumbersome labeling of white
blood cells that might not be routinely available. MR imaging and
PET/CT have excellent sensitivity for vertebral osteomyelitis.67–69

MR imaging provides excellent evaluation of surrounding soft tis-
sues and is more sensitive than PET/CT for the evaluation of small
epidural abscesses. FDG-PET excels in the detection of distant sites
of infection. Thus, MR imaging is used as the primary imaging tool
to evaluate uncomplicated unifocal cases, while FDG-PET may be
considered for possible multifocal disease. PET/MR imaging fared
better than PET/CT in a small study,70 though larger prospective
studies are yet to confirm these results.

Congenital Hyperinsulinism
Congenital hyperinsulinism is characterized by persistent hypo-
glycemia in infancy due to abnormal insulin secretion. Genetic
analysis and [18F] DOPA-PET help differentiate focal and diffuse
histologic subtypes, which, in medically refractory cases, may
undergo focal pancreatic resection or total pancreatectomy,
respectively.

[18F] DOPA-PET is based on L-3,4-DOPA uptake in pancre-
atic islet cells by amino acid transporters, where it is converted to
dopamine by DOPA decarboxylase.71 DOPA decarboxylase activ-
ity is high in focal and diffuse forms of congenital hyperinsulin-
ism. Thus, [18F] DOPA can be used as an indirect marker of
aromatic amino acid decarboxylase activity due to the increased
detection of [18F] DOPA in B-cells with a high rate of insulin syn-
thesis and secretion.72 In focal congenital hyperinsulinism, [18F]
DOPA uptake is greater in the focally abnormal part of the pan-
creas, while diffuse forms of congenital hyperinsulinism show higher
uptake in the pancreatic head compared with other parts of the pan-
creas. SUV suggests focal disease with .1.5-fold localized [18F]
DOPA uptake compared with background pancreatic uptake.73

Euglycemia must be maintained during scanning, and glucagon ther-
apy should be stopped 2days before scanning due to potential inter-
ference with B-cell activity.74
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CONCLUSIONS
Hybrid PET/MR imaging is a promising technique in pediatric
neuroimaging and provides functional and anatomic information
in combination with a reduction in the radiation dose, sedation
time, and sedation events. Availability and technical implementa-
tion are still limited, but the improved diagnostic capabilities are
quite attractive and applicable to a wide range of oncologic and
nononcologic pediatric pathologies.
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