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CLINICAL REPORT
PEDIATRICS

Neuroimaging Findings in Axenfeld-Rieger Syndrome: A Case
Series

Samuel White, Ajay Taranath, Prasad Hanagandi, Deepa A. Taranath, Minh-Son To, Emmanuelle Souzeau,
Owen M. Siggs, and Jamie E. Craig

ABSTRACT

SUMMARY: Axenfeld-Rieger syndrome is an autosomal dominant condition associated with multisystemic features including devel-
opmental anomalies of the anterior segment of the eye. Single nucleotide and copy number variants in the paired-like homeodo-
main transcription factor 2 (PITX2) and forkhead box C1 (FOXC1) genes are associated with Axenfeld-Rieger syndrome as well as
other CNS malformations. We determined the association between Axenfeld-Rieger syndrome and specific brain MR imaging neu-
roradiologic anomalies in cases with or without a genetic diagnosis. This case series included 8 individuals with pathogenic variants
in FOXC1; 2, in PITX2; and 2 without a genetic diagnosis. The most common observation was vertebrobasilar artery dolichoectasia,
with 46% prevalence. Other prevalent abnormalities included WM hyperintensities, cerebellar hypoplasia, and ventriculomegaly.
Vertebrobasilar artery dolichoectasia and absent/hypoplastic olfactory bulbs were reported in .50% of individuals with FOXC1 var-
iants compared with 0% of PITX2 variants. Notwithstanding the small sample size, neuroimaging abnormalities were more prevalent
in individuals with FOXC1 variants compared those with PITX2 variants.

ABBREVIATION: ARS ¼ Axenfeld-Rieger syndrome

Axenfeld-Rieger syndrome (ARS) is an autosomal dominant
genetic condition associated with multisystemic features. It

is characterized primarily by ocular features that result from de-
velopmental anomalies of the anterior segment of the eye, includ-
ing posterior embryotoxon (a thickened and anteriorly displaced
Schwalbe ring), iris hypoplasia, corectopia (displaced pupil),
pseudopolycoria (additional pupillary opening), and iridocorneal
adhesions.1,2 The developmental anomalies of the structures
allowing drainage of the aqueous humor lead to an increased risk
of secondary glaucoma. Commonly reported systemic features
include facial dysmorphism; dental, umbilical, cardiovascular,

and endocrinological anomalies; hearing impairment; and devel-
opmental delay.2,3

ARS has been associated with variants in the paired-like
homeodomain transcription factor 2 (PITX2) and forkhead box
C1 (FOXC1) genes.4-6 PITX2 belongs to the homeobox gene
family and is fundamental to the embryonic development of
several tissues, including an essential role in left-right pattern-
ing.7,8 FOXC1 encodes a forkhead family transcription factor
and is also involved in embryonic development.9,10 Pathogenic
and likely pathogenic variants in FOXC1 and PITX2 have been
reported in �40% of individuals with a clinical diagnosis of
ARS,11,12 with unique ocular and systemic phenotypes associ-
ated with each gene.13-16

Variants in both FOXC1 and PITX2 have also been associated
with a range of CNS malformations, including hydrocephalus,16-18

classic commissural agenesis (corpus callosum agenesis),17-19 and
cerebellar malformations (Dandy-Walker phenotype,20 mega cis-
terna magna, and cerebellar vermis hypoplasia).18,21,22 More
recently, cerebral small-vessel disease has been reported in individ-
uals with FOXC1 or PITX2 variants, with the presence of WM
hyperintensities, dilated perivascular spaces, and lacunar infarcts
on MR imaging.23,24

Here, using a series of ARS cases with accompanying MR
imaging of the brain, we systematically determined the associa-
tion between ARS and specific neuroradiologic anomalies in cases
with or without a genomic diagnosis.
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MATERIALS AND METHODS
Subjects, Genetic Testing, and Neuroimaging
The study was conducted in accordance with the revised
Declaration of Helsinki. Ethics approval was obtained from the
Southern Adelaide Clinical Research Ethics Committee, and all
participants or their caregivers provided written informed con-
sent. Individuals with a clinical diagnosis of ARS were drawn
from the Australian and New Zealand Registry of Advanced
Glaucoma as previously described.25 FOXC1 and PITX2 genetic
testing was performed in a National Association of Testing
Authorities–accredited laboratory by Sanger sequencing or mul-
tiplex ligation-dependent probe amplification as previously
described.16,26 Brain MRIs were assessed by 2 pediatric neurora-
diologists (A.T. and P.H.) blinded to the genetic results of each
participant.

RESULTS
Twelve individuals with ARS were included. The mean age at
evaluation was 37.3 (SD, 21.2) years (range, 2 months–73 years),
77% (10/13) were female, and all were of European ancestry
(Table 1). Eight individuals had heterozygous pathogenic or likely
pathogenic variants in FOXC1 (including 7 with sequence var-
iants and 1 with a full gene deletion), 2 had heterozygous patho-
genic or likely pathogenic variants in PITX2, and 2 had no
genetic diagnosis despite testing.

Globe and Optic Chiasm
Mean globe parameters are outlined in Table 2 and are compared
with ocular biometry from the general population.27,28 A thin
optic chiasm was reported in 42% (5/12) of the cohort. Both indi-
viduals with PITX2 variants had optic chiasm thinning, whereas
only 38% (3/8) of those with FOXC1 variants had a thin optic
chiasm (Fig 1A and Table 3).

Cortex
Five subjects had nonspecific WM hyperintensities. Other WM
changes included reduced WM volume (n¼ 1) and delayed

myelination (n¼ 1). Prominent perivascular spaces were noted in
3 individuals. Four patients had corpus callosal thinning. Three
individuals had colpocephaly/ventriculomegaly, and another had
a ventriculoperitoneal shunt. Other corpus callosal abnormalities
included thickening of the splenium (n¼ 1) and genu (n¼ 1).
The prevalence of prominent perivascular spaces in the FOXC1
variant group was 38% (3/8). Corpus callosum thinning was
observed in 38% (3/8) of FOXC1 variants (Fig 1B). Thirty-eight
percent (3/8) of individuals with FOXC1 variants had ventriculo-
megaly or a ventriculoperitoneal shunt in situ, whereas none
(0/2) of the PITX2 variant group had a ventricular abnormality.

Cerebellum
Hemispheric or global cerebellar hypoplasia was reported in 42%
(5/12) of subjects (Fig 1C). Superior vermian hypoplasia was
identified in 1 patient, and inferior vermis hypoplasia, in another.
Other cerebellar findings included tonsillar ectopia (defined as in-
ferior tonsillar location 3–5mm below the plane of foramen mag-
num) (n¼ 1) and mega cisterna magna (defined as distance from
the posterior aspect of the cerebellar vermis to the inside of the
occipital bone of.10mm) (n¼ 1) (Fig 1C). One of the 2 individ-
uals with PITX2 variants had superior vermis hypoplasia, and
38% (3/8) of the FOXC1 variant group had global or hemispheric
cerebellar hypoplasia.

Brainstem
An oblong pons was observed in 3 patients. Three subjects had
brainstem indentation secondary to tortuous vertebral arteries.
Another individual had medullary elongation. Brainstem inden-
tation secondary to tortuous vertebral arteries was observed in
38% (3/8) of individuals with FOXC1 variants. No brainstem
abnormalities were reported in the PITX2 variant group.

Vessels
Twenty-five percent (3/12) of individuals had circle of Willis
abnormalities on MRA. Vertebrobasilar artery dolichoectasia was
reported in 6 patients (Fig 1D). Four of these 6 individuals also
had anterior circulation dolichoectasia. All 3 patients with circle

Table 1: Cohort demographicsa

All FOXC1 Variant PITX2 Variant No Genetic Diagnosis
Prevalence in overall cohort (No.) (%) NA 8 (61.5) 2 (16.7) 2 (16.7)
Sex, female (No.) (%) 9 (75) 6 (75.0) 2 (100) 1 (50)
European ancestry (No.) (%) 100 (100) 8 (100) 2 (100) 2 (100)
Age (yr)
Mean 37.3 (SD, 21.1) 29.2 (SD, 16.1) 51.8 (SD, 3.04) 10.6 (SD, 14.6)
Range 8–73 8–49 48–54 0–31

Note:—NA indicates not applicable.
a Both sex and ancestry were self-reported.

Table 2: Mean globe parameters

Parameter

Mean Length (mm)

All (n= 12)
FOXC1 Variant

(n= 8)
PITX2 Variant

(n= 2)
No Genetic

Diagnosis (n= 2)
General

Population27,28

Anterior-posterior diameter
of globe

22.1 22.4 24.0 20.1 24.2

Transverse diameter of globe 22.9 23.5 24.0 20.7 24.2
Anterior chamber depth 2.37 2.62 1.89 1.51 2.62
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of Willis abnormalities on MRA had FOXC1 variants, accounting
for 38% of this group. Most (75%) of the FOXC1 variant group
had vertebrobasilar artery dolichoectasia. Of these patients, two-
thirds also had anterior circulation dolichoectasia.

Other Findings
Absent or hypoplastic olfactory bulbs were reported in 50% (6/12)
of subjects (Fig 1E). Other findings included cochlear nerve

hypoplasia (n¼ 1), a widened opercula (n¼ 1), hippocampal mal-
rotation (n¼ 1), and bilateral absent posterior semicircular canals
(n¼ 1). Absent or hypoplastic olfactory bulbs were reported in
63% (5/8) of subjects with FOXC1 variants but in none (0/2) of
the subjects with PITX2 variants. Except for 1 subject with right
unicoronal craniosynostosis, most of the cohort did not have cra-
niofacial dysmorphism. The pituitary gland and hypothalamus
were normal across the cohort. There was no abnormality of the

deep gray nuclei. No dental abnormal-
ities were observed.

DISCUSSION
This case series reviewed the neuroradio-
logic features of 12 individuals diagnosed
with ARS, comprising 8 individuals with
FOXC1 variants, 2 with PITX2 variants,
and 2 with unsolved genetic defects.
No single anatomic abnormality was
observed in most individuals. The
most common observation was verte-
brobasilar artery dolichoectasia (50%
prevalence), which was associated with
anterior circulation dolichoectasia in
most cases. Other prevalent abnormal-
ities included WM hyperintensities
(42%), hemispheric or global cerebellar
hypoplasia (42%), corpus callosal thin-
ning (33%), and ventriculomegaly
(25%). Optic chiasm thinning was
observed in both members of the PITX2
variant group and in 38% of the FOXC1
variant group. Vertebrobasilar artery
dolichoectasia was reported in 75% of
individuals with FOXC1 variants com-
pared with 0% of individuals with
PITX2 variants. Similarly, while 63% of
individuals with FOXC1 variants had
absent or hypoplastic olfactory bulbs,
they were not observed in any of the
individuals with PITX2 variants. Circle
of Willis abnormalities on MRA and
ventricular abnormalities both had a
prevalence of 38% in the FOXC1 group
compared with 0% in the PITX2 group.

A1 A2 

C2 D1 

B1 B2 

C1 D2 

E2 F E1 G 

FIGURE. A, A 49-year-old woman with a PITX2 mutation had superior vermian volume loss on
the T1-weighted sagittal image (A1) and optic chiasm thinning on the T2-weighted coronal image
(A2). B, A 2-month-old girl with an unsolved mutation had inferior vermian hypoplasia and a wid-
ened tegmentovermian angle on the T1-weighted sagittal image (B1) and malrotated hippocampi
on the T2-weighted coronal image (B2). C, A 43-year-old man with a FOXC1 mutation had mega
cisterna magna and an ectatic basilar artery and a hypoplastic left cerebellar hemisphere on the
T2-weighted axial image (C1) and hypoplastic olfactory bulbs on the T2-weighted coronal image
(C2). D, A 46-year-old man with a FOXC1 mutation had a tortuous basilar artery and an ectatic
cavernous segment of the left ICA on axial TOF angiography (D1); a short mesencephalon with
loss of the normal relationship among the mesencephalon, pons, and medulla; loss of volume in
the superior vermis and ectatic basilar artery; and flow void seen end-on on the T2-weighted sag-
ittal image (D2). E, A 41-year-old woman with a FOXC1 mutation had a tortuous basilar artery flow
void on the T2-weighted axial image (E1), a short mesencephalon with loss of the normal relation-
ship among the mesencephalon, pons, and medulla, and bowing of the corpus callosum second-
ary to ventriculomegaly on the T1-weighted sagittal image (E2). F, A 3-month-old boy with an
unsolved mutation had absent olfactory bulbs on the T2-weighted coronal image. G, A 31-year-
old woman with an unsolved mutation had a thickened splenium and tonsillar ectopia on the T1-
weighted sagittal image.

Table 3: Prevalence of neuroradiologic anomaliesa

(N (%)) All FOXC1 PITX2 No Genetic Diagnosis
Thin optic chiasm 5/12 (41.7) 3/8 (37.5) 2/2 (100) 0/2 (0.0)
Nonspecific WM hyperintensities 5/12 (41.7) 4/8 (50.0) 1/2 (50.0) 0/2 (0.0)
Corpus callosal thinning 4/12 (33.3) 3/8 (37.5) 0/2 (0.0) 1/2 (50.0)
Ventriculomegaly or ventriculoperitoneal shunt 4/12 (33.3) 3/8 (37.5) 0/2 (0.0) 0/2 (0.0)
Hemispheric or global cerebellar hypoplasia 5/12 (41.7) 3/8 (37.5) 1/2 (50.0) 0/2 (0.0)
Oblong pons 3/12 (25.0) 2/8 (25.0) 0/2 (0.0) 1/2 (50.0)
Brainstem indentation secondary to tortuous vessels 3/12 (25.0) 3/8 (37.5) 0/2 (0.0) 0/2 (0.0)
Circle of Willis abnormalities 3/12 (25.0) 3/8 (37.5) 0/2 (0.0) 0/2 (0.0)
Vertebrobasilar artery dolichoectasia 6/12 (50.0) 6/8 (75.0) 0/2 (0.0) 0/2 (0.0)
Absent/hypoplastic olfactory bulb 6/12 (50.0) 5/8 (62.5) 0/2 (0.0) 1/2 (50.0)

a Data are (No.) (%).
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Mean globe parameters were smaller in the cohort without a
genetic diagnosis. Although we acknowledge the very small sam-
ple size, this group might have an underlying genetic etiology
that also impacts globe development, though this remains to be
validated. No individuals with FOXC1 or PITX2 variants had cra-
niofacial dysmorphism or abnormalities of the hypothalamus, pi-
tuitary, deep gray nuclei, or dentition.

The specific endocrinologic manifestations of ARS have not
been comprehensively reported in the literature. Santini et al29

have described a patient with growth hormone deficiency associ-
ated with ARS. Notably, growth hormone deficiency is a preva-
lent feature among individuals with septo-optic dysplasia,30

which, like ARS, often involves olfactory bulb–tract hypoplasia.31

While there have been several isolated ARS neuroimaging
case studies reported,32-34 to our knowledge, there is only 1 case
series (Reis et al35) that characterized the genetic and phenotypic
features of an ARS cohort comprising 128 individuals with
FOXC1 or PITX2 variants, including 18 with neuroimaging. The
authors observedWM hyperintensities in 94% of FOXC1 variants
and 50% of PITX2 variants35 (compared with 50% for both
FOXC1 and PITX2 variant groups in our study). Seventy-one per-
cent of individuals with FOXC1 variants had colpocephaly/ventri-
culomegaly (compared with 25% in our study). Reis et al also
reported a 31% prevalence of arachnoid cysts in the FOXC1 vari-
ant group, which was not assessed in our case series. Most inter-
esting, the same study observed no correlation between the extent
of neuroimaging anomalies and the presence or severity of cogni-
tive impairment in patients with FOXC1 variants.

Due to the nature of the imaging technique used in this study
(MR imaging of the brain), we were not able to reliably detect ex-
tracerebral abnormalities such as craniofacial dysmorphism and
dental anomalies, which are more sensitively detected by physical
examination and specific dental imaging modalities such as
orthopantomogram. Reis et al35 reported classic dental anomalies
such as hypodontia/oligodontia and microdontia in 91% of indi-
viduals with PITX2 variants, with similar anomalies reported in
100% (23/23) of an Australian PITX2 cohort16 drawn from the
same registry as the current study. In contrast, these classic dental
anomalies were considerably less common among the FOXC1
group, who had a tendency to present with more atypical anoma-
lies such as enamel hypoplasia/frequent caries (16%) or dental
crowding (16%).35 In a similar vein, while craniofacial dysmor-
phism was not observed on MR imaging of the brain in any of
the individuals included in our case series, features such as thin
upper lip and maxillary hypoplasia were reported in 78% of indi-
viduals with FOXC1 variants and 93% of individuals with PITX2
variants in 1 previous study,35 and in another study (which
included all cases described here), hypertelorism/telecanthus and
low-set ears were found to be more prevalent in those with
FOXC1 variants compared with those with PITX2 variants.15

This case series was limited by its small cohort size (n¼ 12),
particularly with respect to the PITX2 variant group (n¼ 2), which
like other ARS case series precluded statistical comparisons.33

CONCLUSIONS
This study is novel in its description of the relative prevalence of
neuroimaging findings among patients with FOXC1 and PITX2

variants, and overall, we observed that the FOXC1 variant group
had a higher prevalence of most (70%) neuroimaging abnormal-
ities assessed (Table 3). The most common observation was verte-
brobasilar artery dolichoectasia, which was reported in 75% of
individuals with FOXC1 variants compared with 0% of individu-
als with PITX2 variants.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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