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Automated Segmentation of Intracranial Thrombus on NCCT
and CTA in Patients with Acute Ischemic Stroke Using a

Coarse-to-Fine Deep Learning Model
K. Zhu, F. Bala, J. Zhang, F. Benali, P. Cimflova, B.J. Kim, R. McDonough, N. Singh, M.D. Hill, M. Goyal,

A. Demchuk, B.K. Menon, and W. Qiu

ABSTRACT

BACKGROUND AND PURPOSE: Identifying the presence and extent of intracranial thrombi is crucial in selecting patients with acute
ischemic stroke for treatment. This article aims to develop an automated approach to quantify thrombus on NCCT and CTA in
patients with stroke.

MATERIALS AND METHODS: A total of 499 patients with large-vessel occlusion from the Safety and Efficacy of Nerinetide in
Subjects Undergoing Endovascular Thrombectomy for Stroke (ESCAPE-NA1) trial were included. All patients had thin-section NCCT
and CTA images. Thrombi contoured manually were used as reference standard. A deep learning approach was developed to seg-
ment thrombi automatically. Of 499 patients, 263 and 66 patients were randomly selected to train and validate the deep learning
model, respectively; the remaining 170 patients were independently used for testing. The deep learning model was quantitatively
compared with the reference standard using the Dice coefficient and volumetric error. The proposed deep learning model was
externally tested on 83 patients with and without large-vessel occlusion from another independent trial.

RESULTS: The developed deep learning approach obtained a Dice coefficient of 70.7% (interquartile range, 58.0%–77.8%) in the in-
ternal cohort. The predicted thrombi length and volume were correlated with those of expert-contoured thrombi (r ¼ 0.88 and
0.87, respectively; P, .001). When the derived deep learning model was applied to the external data set, the model obtained simi-
lar results in patients with large-vessel occlusion regarding the Dice coefficient (66.8%; interquartile range, 58.5%–74.6%), thrombus
length (r ¼ 0.73), and volume (r ¼ 0.80). The model also obtained a sensitivity of 94.12% (32/34) and a specificity of 97.96% (48/49)
in classifying large-vessel occlusion versus non-large-vessel occlusion.

CONCLUSIONS: The proposed deep learning method can reliably detect and measure thrombi on NCCT and CTA in patients with
acute ischemic stroke.

ABBREVIATIONS: AIS ¼ acute ischemic stroke; ASSD ¼ average symmetric surface distance; DC ¼ Dice coefficient; DL ¼ deep learning; EVT ¼ endovascu-
lar therapy; HD95 ¼ 95th percentile of the Hausdorff distance; IQR ¼ interquartile range; LVO ¼ large-vessel occlusion; MeVO ¼ medium-vessel occlusion;
STAPLE ¼ simultaneous truth and performance level estimation

Randomized controlled trials in patients with acute ischemic
stroke (AIS) have demonstrated the efficacy and safety of

endovascular therapy (EVT) compared with medical therapy in
patients with large-vessel occlusion (LVO).1,2 Identifying the pres-
ence, location, and extent of thrombi on NCCT andCTA images is
important when selecting patients with AIS for reperfusion ther-
apy. Thrombus characteristics such as location, length, volume,
and permeability are helpful in predicting recanalization after both
thrombolysis and EVT.3,4 Recent studies have also shown that
thrombus radiomics is able to predict recanalization with IV alte-
plase5 and first-attempt recanalization with thromboaspiration.6
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Accurate segmentation of thrombi on baseline imaging is the
first step in assessing thrombus characteristics. Manual delinea-
tion of the thrombus is still the criterion standard in assessing
thrombus characteristics in clinical practice.7 It requires expertise
in imaging interpretation and is observer-dependent. Semiautomated
segmentation techniques use clinicians’ input to help with this
task, but the variability introduced by user input is still a concern.8

A fully-automated thrombus segmentation approach readily avail-
able in the acute setting is, therefore, desirable.

Automated segmentation of thrombi on NCCT or CTA is,
however, challenging due to various reasons. These include the
low signal-to-noise ratio on CT-based imaging, partial volume
effects, CT image artifacts, and intracranial calcification, and so
forth, all of which hinder accurate delineation of the thrombus.
These challenges imply that the traditional model-based or
thresholding-based segmentation methods may not be able to
achieve accurate or acceptable results.9-12 To the best of our
knowledge, there are very few established approaches to auto-
matically segment intracranial thrombi on CT images. This study,
therefore, aims to develop and externally validate an automated
thrombus-segmentation approach on NCCT and CTA images in
patients with acute stroke presenting with intracranial vessel
occlusion.

MATERIALS AND METHODS
Study Participants
Patients were retrospectively selected from the Safety and Efficacy of
Nerinetide in Subjects Undergoing Endovascular Thrombectomy
for Stroke (ESCAPE-NA1) randomized controlled trial
(ClinicalTrials.gov: NCT02930018).13 Study approval was obtained
from the ethics board at each site and the responsible regulatory

authorities. Signed informed consent was obtained from the
patients or their legally authorized representatives. Inclusion cri-
teria for the main study were the following: 1) 18 years of age or
older with LVO (intracranial ICA, MCA M1, or functional M1
[proximal occlusion of all M2 branches]), 2) NIHSS score of $5,
3) time from last seen well,12hours, 4) pial collateral filling of
$50% of the ischemic MCA territory, and 5) ASPECTS$ 5. For
this study, we included only patients with available thin-section
(#2.5mm) baseline NCCT and CTA images (single-phase or 1
phase of multiphase CTA). We excluded patients whose imaging
showed the following: 1) irremediable coregistration errors (n ¼
13), 2) severe motion artifacts (n ¼ 16), or 3) beam-hardening
artifacts (n ¼ 11). A total of 499 patients were included, of whom
329 were randomly selected for the training (n ¼ 263) and inter-
nal validation (n ¼ 66); the remaining 170 patients (independent
of the derivation cohort) were used to internally test the derived
model (Fig 1).

An external validation set was also used to test the generaliz-
ability of the derived DL model. This data set comprised 83 ran-
domly chosen patients with AIS with anterior circulation
occlusions from the Precise and Rapid Assessment of Collaterals
Using Multi-Phase CTA in the Triage of Patients with Acute
Ischemic Stroke for IV or IA Therapy (PRoVe-IT) study.14,15 Of
the 83 patients, 34 had LVO, 28 had medium-vessel occlusion
(MeVO) (M2/M3/M4 segments of the MCA or A2/A3/A4 seg-
ments of the anterior cerebral artery), and 21 had no identifiable
intracranial occlusion.

Reference Standard: Manual Segmentation of Thrombi
The thin-section NCCT images were automatically coregistered
onto the CTA images (using the second phase if multiphase CTA
was available) using rigid-body transformation (the SimpleITK
packages in Python; https://pypi.org/project/SimpleITK/),16 fol-
lowed by skull-stripping.17 An expert neuroradiologist visually
inspected the registration results and performed manual correc-
tions by using the 3D Slicer software (Version 4.1, https://www.
slicer.org/) when the coregistration was suboptimal.18 Four
trained readers (3 neuroradiologists with .5 years’ experience in
vascular imaging and 1 vascular neurologist with .10 years of
stroke imaging experience) manually segmented intracranial
thrombi section-by-section on NCCT images while referring to
the coregistered CTA images using ITK-SNAP (http://www.
itksnap.org/).19 Four readers were each responsible for one-
fourth of the entire data set, and they were blinded to clinical in-
formation and follow-up imaging.

All 4 readers segmented a subset of 10 patients randomly
selected from the internal test set. An expectation-maximization
algorithm for simultaneous truth and performance level estima-
tion (STAPLE) algorithm was performed to generate a computa-
tional “golden reference standard” based on the 4 experts’
segmentations, which was used to assess the variability of manual
segmentations.20

Deep Learning Model
A 2-stage coarse-to-fine thrombus segmentation neural network
was proposed on the basis of the U-net architecture.21 The pro-
posed deep learning (DL) model used a multiscale training

FIG 1. Flowchart of patient inclusion.
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strategy with a deep-supervision mechanism. In particular, a
channel and spatial attention block was designed to make the
model focus more on the salient areas on images at different
scales and obtain more conducive features.22 The spatial attention
module generates a spatial attention map using the interspatial
relationship of features. Different from channel attention, spatial
attention focuses on where an informative part is, which is com-
plementary to channel attention. To compute the spatial atten-
tion, we apply average-pooling and max-pooling operations
along the channel axis first and concatenate them to generate an
efficient feature descriptor.22 On the concatenated feature descrip-
tor, we apply a convolution layer to generate a spatial attention
map, which encodes where to emphasize or suppress. In this arti-
cle, the patch size for spatial transform was 96 � 160 � 160
voxels. To make full use of multiscale context information, we
used a scale-aware pyramid fusion module, in which 3 parallel
dilated convolutions with different dilation rates were used to cap-
ture information at different scales.23

The detailed architecture of the proposed model is shown in
Fig 2, and the details around the model architecture and hyper-
parameter optimization are summarized as follows: The 3D ker-
nel size for convolutions was 3� 3 � 3. Feature numbers at each
layer were 32, 64, 128, 256, and 320 (limited to 320 to ensure suf-
ficient context aggregation). Batch normalization was used in the
proposed network, which took a step toward reducing the inter-
nal covariate shift and, in doing so, dramatically accelerated the
training of deep neural nets. The batch size of the networks was

2, to enable large patch sizes, and the leaky Rectified Linear Unit
nonlinearity was implemented. Stochastic gradient descent with
Nesterov momentum (m ¼ 0.99) was used as the optimizer.
The initial learning rate, dampening, batch size, and decay
weight were 0.01, 0, 2, and 3 � 10�5, respectively. The
learning rate was decayed throughout the training following
lr init � ð1� epoch=epochmaxÞ0:9, where lr init is 0.01 and
epochmax is the maximum of the epoch.

Specifically, NCCT images after skull-stripping were downsampled
from the original spacing of 0:625 � 0:488 � 0:488 mm3

(257� 456 � 436 voxels) to 1:08 � 0:844 � 0:844 mm3

(149 � 264 � 252 voxels) and passed into the coarse model to
obtain maximal contextual information and localize thrombi can-
didates at the first coarse stage. The output of the prediction maps
at the coarse stage was upsampled to the original resolution and
fed into the fine stage together with the original images to obtain
more detailed segmentation. In particular, the fused features of
each layer at the coarse stage were upsampled and concatenated to
the features of the corresponding layer at the fine stage to use both
global contextual information and local detail information
obtained at coarse and fine stages.

Additionally, 5-fold cross-validation on the training data set
was performed to select the optimal model at the coarse and fine
stages. Spatial augmentations (rotation, scaling, low-resolution
simulation, and so forth) were applied in 3D to increase the di-
versity of the training data. The combined Dice and cross-en-
tropy were used as the loss function.24 At each level of deep

FIG 2. The proposed coarse-to-fine DL architecture. A 2-stage coarse-to-fine thrombus segmentation neural network used a multiscale training
strategy with a deep-supervision mechanism, which consisted of the channel and spatial attention blocks and the scale-aware pyramid fusion
module.
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supervision, the ground truth segmentation mask was corre-
spondingly downsampled for loss computation on the basis of
the size of the feature maps. The training objective was the sum
of the losses (L) at all resolutions, L ¼ W1 � L1 þ W2 �
L2 þ . . .. Hereby, the weights (W) were halved with each decrease
in resolution, resulting in W2 ¼ 0:5W1, W3 ¼ 0:25W1, and so
forth, and were normalized to sum 1.

Statistical Methods
Patient demographics, including clinical and imaging variables,
were compared across the derivation and internal test sets using
the x2 and Student t tests as appropriate.

The proposed segmentation method was quantitatively eval-
uated using the spatial overlap metric of the Dice coefficient
(DC) and 2 boundary distance error metrics: average symmetric
surface distance (ASSD) and 95th percentile of the Hausdorff
Distance (HD95),25 compared with the reference standard of
manual (expert) segmentation. The DC is a spatial overlap index
ranging from 0 to 1, where 1 indicates a perfect overlap between
the reference standard and the predicted segmentation and vice
versa. The ASSD and HD95 represent the average and largest
HD95 errors between the 2 surfaces derived from the segmented
and reference objects in 3D space. For ASSD and HD95, 0mm
indicates perfect segmentation. The correlations regarding
thrombus length and volume between the DL-derived model and
manual measurements were analyzed using the Pearson correla-
tion and Spearman correlation as appropriate to the data distri-
bution.26 The correlation was considered excellent if $0.70 and
good if between 0.5 and 0.7.26 Absolute and relative errors of
thrombus volume and length were also calculated. These metrics

were all calculated in 3D space at a patient level and
applied onto both the internal data set (ESCAPE-
NA1) and the external test data set (PRoVe-IT) for
internal and external validation, respectively. On
the basis of the segmentation results, the model pre-
dictions can be also used to distinguish the patients
with LVO versus without LVO after localizing the
segmented thrombus and thresholding thrombus
volume. We further assessed the specificity and sen-
sitivity of the DL model in classifying intracranial
thrombi (LVO versus non-LVO and occlusion ver-
sus nonocclusion) in the external data set.

All statistical analyses were performed using the
SciPy package (https://scipy.org/). All P values were
2-sided, and statistical significance was defined as
P, .05.

RESULTS
Patient Characteristics
Patient characteristics of the derivation and internal
and external test data are summarized in Table 1.
There were no statistically significant differences in
baseline characteristics between the derivation and
internal test data (all, P. .05, Table 1). The choice
of the external test data, with different characteris-
tics than the internal data, was deliberate.

Internal Validation
All patients had ICA or M1 segment MCA occlusions. Figure 3
shows 2 examples predicted by the proposed DLmodel compared
with the reference standard. Quantitative results on the internal
test data of 170 patients are shown in Table 2. The proposed DL
model obtained a median DC of 70.7% (interquartile range
[IQR], 58.0%–77.8%), a median ASSD of 0.38mm (IQR, 0.24–
0.77 mm), and a median HD95 of 1.31mm (IQR, 0.79–3.83
mm). The median thrombus length measured by the DL model
was 13.94mm (IQR, 6.32–25.76 mm) and was strongly correlated
with that of the expert segmented thrombi (r ¼ 0.88, P, .001).
The median difference d Ldiff ðmmÞ and median absolute differ-
ence jd Ldiff j ðmmÞ of thrombus length between the expert seg-
mentation and algorithm predictions were �5.41mm (IQR,
�11.34 to �0.5mm) and 5.79mm (IQR, 1.79–11.37 mm), respec-
tively. The median thrombus volume of 71.9mm3 (IQR, 39.25–
126.15 mm3) obtained by the DL model also strongly correlated
with that obtained by expert segmentation (r ¼ 0.87, P, .001).
The median volume difference dVdiff ðmm3Þ and the median
absolute volume difference jdVdiff j ðmm3Þ between the expert
segmentation and algorithm predictions were �0.9mm3 (IQR,
�3.41–0.33 mm3) and 1.76mm3 (IQR, 0.71–4.23 mm3),
respectively.

External Validation
The prevalence of LVO, MeVo, and no occlusions in the external
data was 34 (41%), 28 (33.7%), and 21 (25.3%), respectively.
Quantitative results from the 34 patients with LVO in the exter-
nal data are shown in Table 2. In these 34 patients with LVO, the
proposed DL model obtained a median DC of 66.8% (IQR,

Table 1: Patient characteristics in the derivation data and in the internal and
external test dataa

Characteristic
Derivation Set

(n = 329)
Internal Test Set

(n = 170)
External Test Set

(n = 83)
Age (yr)b 69 (59–78) 68 (59–79) 71 (63–79)
Male 173 (52.6) 89 (52.4) 43 (51.8)
Race
White 261 (79.3) 142 (83.5) NA
Asian 26 (7.9) 10 (5.9)
African American 35 (10.6) 14 (8.2)
Other 7 (2.1) 4 (2.4)

Onset-to-CT timeb 160 (82–268) 154 (79–284) 120 (89–184)
Baseline NIHSS score b 17 (12–21) 16 (13–20) 9 (5–15)
ASPECTSb 8 (7–9) 8 (7–9) 10 (8–10)
Hypertension 222 (67.5) 127 (74.7) 49 (59.0)
Hyperlipidemia 140 (42.6) 79 (46.5) NA
Diabetes 70 (21.3) 36 (21.2) 9 (10.8)
IV alteplase 193 (58.7) 99 (58.2) 66 (79.5)
IV nerinetide 155 (47.1) 87 (51.2) 0
Occlusion site
ICA 71 (21.6) 39 (23.0) 8 (9.6)
M1, MCA 248 (75.4) 125 (73.5) 26 (31.3)
M2, MCA 10 (3.0) 6 (3.5) 10 (12.1)
M3/M4, MCA 0 0 13 (15.7)
ACA (A2/A3) 0 0 3 (3.6)
PCA (P2) 0 0 2 (2.4)
No occlusion 0 0 21 (25.3)

Note:—ACA indicates anterior cerebral artery; PCA, posterior cerebral artery; NA, not applicable.
a Except where indicated, data are number of patients, with percentages in parentheses.
b Data are the median with the IQR in parentheses.

644 Zhu Jun 2023 www.ajnr.org

https://scipy.org/


58.5%–74.6%), a median ASSD of 0.56mm (IQR, 0.19–1.21 mm),
and a median HD95 of 3.05mm (IQR, 1.37–8.19 mm) compared
with the reference standard. The median thrombus length
measured by the proposed DL model was 9.0mm (IQR, 3.4–
21.74 mm), which correlated significantly with expert manual
segmentation (r ¼ 0.73, P, .001). The median difference
d Ldiff ðmmÞ and the median absolute difference jd Ldiff j ðmmÞ
of thrombus length between the expert segmentation and algo-
rithm predictions were 0.0mm (IQR, �6.12–8.2 mm) and
6.14mm (IQR, 2.81–12.27 mm), respectively. The median
thrombus volume of 58.14mm3 (IQR, 32.96–104.68 mm3)
obtained by the DL model strongly correlated with manual
segmentation (r ¼ 0.80, P, .001). The median volume

difference dVdiff ðmm3Þ and the median
absolute volume difference jdVdiff j ðmm3Þ
between the expert segmentation and algo-
rithm predictions were 0.59 mm3 (IQR,
�0.17–4.53 mm3) and 1.47 mm3 (IQR, 0.5–
4.62 mm3), respectively.

The accuracy, specificity, and sensitivity
of the DL model in classifying intracranial
thrombi were further investigated in the exter-
nal data. The DL model obtained a sensitivity
of 94.12% (32/34) and a specificity of 97.96%
(48/49) in classifying patients with LVO versus
non-LVO (including patients with MeVO and
no occlusion). The DL model obtained a sensi-
tivity of 69.35% (43/62) and a specificity of
100% (21/21) in classifying patients with occlu-
sion versus no occlusion.

Analysis of Variability in Manual Segmentations
The median thrombus length and volume derived from the 10
patients using the STAPLE algorithm were 20.53mm (IQR,
18.05–42.17 mm) and 52.49mm3 (IQR, 22.99–166.42 mm3),
respectively. Compared with the criterion standard generated by
the STAPLE algorithm, the median DCs were 54.4% (IQR,
49.4%–70.7%), 57.5% (IQR, 49.1%–64.6%), 82.9% (IQR, 39.9%–

94.1%), and 88.3% (IQR, 58.6%–93.5%) for the 4 raters, respec-
tively. The proposed DL model achieved a median DC of 64.7%
(IQR, 45.7%–73.7%), approaching an average performance of
the 4 experts’ manual contouring. Other metrics, ie, ASSD,
HD95, and volume correlations, showed consistent results
(Online Supplemental Data).

Table 2: Quantitative evaluation of thrombus measurement in the internal test
data (170 patients) and external validation data (34 patients with LVO) of PRoVe-
ITa

Internal Validation Data
(n = 170)

External Validation Data
(n = 34)

DC (%) 70.7 (58.0–77.8) 66.8 (58.5–74.6)
ASSD (mm) 0.38 (0.24 to 0.77) 0.56 (0.19�1.21)
HD95 (mm) 1.31 (0.79�3.83) 3.05 (1.37�8.19)
Reference length (mm) 20.3 (10.25–34.73) 12.11 (5.73–19.51)
Prediction length (mm) 13.94 (6.32�25.76) 9.0 (3.4–21.74)
d Ldiff ðmmÞ �5.41 (�11.34 to �0.5) 0.0 (�6.12�8.2)
jd Ldiff j ðmmÞ 5.79 (1.79�11.37) 6.14 (2.81�12.27)
Reference volume (mm3) 80.53 (49.92–155.39) 37.51 (29.19–78.3)
Prediction volume (mm3) 71.9 (39.25–126.15) 58.14 (32.96–104.68)
dVdiff (mm3) �0.9 (�3.41�0.33) 0.59 (�0.17�4.53)
jdVdiff j (mm3) 1.76 (0.71�4.23) 1.47 (0.5�4.62)
Volume correlation 0.95 (0.89–0.98) 0.91 (0.84–0.96)

a Values are shown as medians with the IQR in parentheses. d ðÞ and jd ðÞj represent relative and absolute,
error, respectively.

FIG 3. Two segmentation examples obtained by the proposed model. The images are shown as NCCT/CTA overlaid with the manually or algo-
rithm-segmented thrombi in red.
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DISCUSSION
This study describes a fully automated DL model for intracranial
thrombus segmentation on NCCT and CTA images in patients
with AIS. This model used a coarse-to-fine DL network with mul-
tilevel and multiscale feature fusion and deep-supervision strat-
egy. It was developed using a large data set of 329 patients and
tested internally and externally for generalizability. Both internal
and external validations demonstrate that the developed model
can accurately detect and segment intracranial thrombi, especially
in patients with LVO, compared with manual segmentation by
experts.

There are no well-established methods for automated throm-
bus segmentation, and only a few that use semiautomated meth-
ods.7–11 Existing methods of thrombus segmentation rely on
manual or semiautomated measurements of thrombus density on
NCCT. This method of density assessment by using small ROIs is
prone to interobserver variability due to the heterogeneity in
thrombus composition and the small size of intracranial thrombi
and is sensitive to partial volume effects, image noise, and the
presence of vessel wall calcification.7 Santos et al27 developed a
semiautomated region-growing segmentation method that was
limited by a low observer agreement and variability in thrombus
density. Qazi et al12 used linear regression to build statistical
models to predict patient-specific optimal Hounsfield unit
thresholds, which replaced a universal single Hounsfield unit
threshold for thrombus segmentation favored by Riedel et al.28

However, these thrombus density threshold-based methods are
subject to image-intensity variability, and their generalizability is
a concern. Lucas et al29 proposed a cascaded neural network to
segment thrombi. Unfortunately, this method was restricted to
2D images and limited to the MCA 1 ICA region, used fixed
ROIs, and was developed using a small data set (the segmentation
network was trained on only the 216 positive cases). Mojtahedi et
al30 used dual-modality U-Net-based CNNs to detect the throm-
bus location and then limited the search area by creating a
bounding box around the detected thrombus location, which
would allow the first-level prediction errors to stack up later. To
the best of our knowledge, our study represents the largest data
set of automated intracranial thrombus segmentation on NCCT/
CTA with internal and external validation. The proposed method
can automatically segment small thrombi in 3D whole-brain
NCCT images, which overcomes the limitations of segmentation
methods such as intensity-based and fixed ROI annotations.

Among the 170 patients with LVO in the internal validation,
the DL model failed to detect thrombus in only 10 cases. Visual
inspection showed that these false-negative cases could be attrib-
uted to one or a combination of reasons: 1) small thrombi
(,30mm3) (n ¼ 4); 2) isodense (to surrounding tissue) thrombi
(n ¼ 7); and 3) the presence of severe beam-hardening artifacts
on the thrombus (n ¼ 5). Only 7.5% of training data had such
imaging characteristics in the retrospective analysis. Including
more sample images with such characteristics in the training data
could have improved the performance of the derived DL model.

The volumetric analyses regarding thrombus length and vol-
ume also show excellent internal and external validation.
However, the difference in thrombus length and HD95 seems to
be large, possibly explained by the challenges in segmenting

thrombi in curved vessels. Nonetheless, this study reports HD95
values, 3.05 (range, 1.37–8.19), similar to those reported in the
Multicenter Randomized Clinical Trial of Endovascular
Treatment for Acute Ischemic Stroke in the Netherlands (MR
CLEAN) study, 5.67 (range, 4.30–7.04).30 The median DC was
70.7% in internal validation in the LVO-only ESCAPE NA1 study
and 66.8% in the 34 LVO cases in external validation in the
PRoVe-IT study. This slight difference could be because patients
in the ProVe-IT study had less severe stroke than patients in the
ESCAPE-NA1 trial (NIHSS score 8 versus 16) and, therefore, less
extensive thrombi. Indeed, the median thrombus volume of the
patients with LVO in the PRoVe-IT data (37.51mm3; IQR,
29.19–78.3 mm3) was much smaller than that in the internal data
set of ESCAPE-NA1 (80.53mm3; IQR, 49.92–155.39 mm3).

Moreover, the DC of the proposed model in the external vali-
dation set was 66.8%, suggesting a good agreement between the
predicted and the measured thrombi. Our DC is similar to the
algorithm developed from the MR CLEAN data, which achieved
a DC of 62%.30 Despite the smaller thrombus burden, the devel-
oped DLmodel obtained a high specificity in identifying the pres-
ence of thrombus in the external validation. The sensitivity of
77.42% (48/62) was comparably low because 14 of 28 MeVO
cases were identified as having no occlusions by the model, which
might be because the derived DL model was trained using only
LVO cases. Including more patients with distal occlusions or
without occlusions in the training data could have improved the
accuracy of the model in detecting small thrombi.

The results of our study have several implications in clinical
practice. Automated segmentation can be used to extract radio-
logic thrombus characteristics, such as thrombus length and vol-
ume, which were shown to be associated with clinical outcomes
and reperfusion success.31,32 Although not included in the output
of our proposed model, thrombus density and permeability are
also useful in predicting clinical and angiographic outcomes,31

thus justifying future work to automate their calculations.
Physicians can use the output of our model to inform their deci-
sions regarding bridging therapy; for instance, long and large
thrombi might benefit more from adjunctive IV thrombolysis
compared with smaller thrombi; however, this possibility needs
to be validated in future work.33 Furthermore, information about
the precise location and length of the thrombus is useful for neu-
rointerventionalists to plan the EVT procedure and choose the
best device to achieve fast and effective reperfusion. Last, auto-
mated segmentation can be applied on big databases to extract
thrombus characteristics in a faster and easier manner compared
with humans and, thus, could be used to improve the design of
EVT devices.

Detection and segmentation of thrombi on NCCT/CTA are te-
dious and time-consuming for physicians.5,27,34,35 Improvements
in image quality, better training, and systematic assessments of
thrombus characteristics (parameterization and morphology) are
useful to help humans improve thrombus detection on NCCT and
CTA. Regardless of these strategies, detecting thrombi on NCCT
and CTA continues to be challenging for humans, especially with
small thrombi. Furthermore, the results using the reference stand-
ard generated by the STAPLE algorithm show the variability of
manual segmentations across different raters and thus highlight
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the need for an automated process to standardize the extraction of
thrombus characteristics.

Our study has several limitations. First, patients with unavail-

able thin-section NCCT and CTA images were excluded, there-

fore introducing selection bias; however, we chose to do so to

decrease measurement error from thick-section scans. Second, 4

well-trained experts manually contoured the data for evaluation.

Even though the reproducibility of manual segmentations in our

experiments was acceptable, the variability introduced by cogni-

tive biases and heuristics and image misalignment should be con-

sidered. The variability in the results is partly explained by the

difference in experience and training among the 4 raters. Two

raters were neuroradiologists (raters 1 and 3), one was a neurora-

diology resident (rater 2), and one was a vascular neurologist

(rater 4). The 2 neuroradiologists achieved the highest DCs.

Moreover, intracranial thrombi are small and occur in curved

vessels. Annotation of lesions that are small with curved shapes

can also result in variability compared with larger-sized lesions

where variability will be inherently less. Third, the internal data

sets did not include MeVO occlusions, explaining the low model

performance for these cases. Future studies focusing on this

occlusion subgroup would improve detection and delineation of

these thrombi. Fourth, the proposed model did not show good

performance in small and isodense thrombi; however, we chose

to keep these cases, contrary to a prior study, to increase the gen-

eralizability of our results. Including more studies with artifacts

(beam-hardening and so forth) would also improve the generaliz-

ability. Fifth, the developed model can be applied only on thin-

section NCCT and CTA images. The extension to a more widely

used NCCT with 5-mm-thick slices should be investigated.

CONCLUSIONS
An automated method based on DL is capable of detecting and
segmenting thrombi reliably, especially those causing LVOs, on
NCCT and CTA images in patients with AIS. Extensive valida-
tions demonstrate the efficacy of the proposed technique com-
pared with the reference standard (ie, manual segmentation). If
translated into a clinical setting, this algorithm could help physi-
cians in their decision-making for AIS.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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