Fenestration of the supraclinoid internal carotid artery with rupture of associated aneurysm.

D H Yock, Jr

http://www.ajnr.org/content/5/5/634.citation

This information is current as of August 25, 2023.
Fenestration of the Supraclinoid Internal Carotid Artery with Rupture of Associated Aneurysm

Douglas H. Yock, Jr.¹

Fenestration of cerebral arteries is a rare anomaly sometimes accompanied by a small proximal aneurysm. Our patient was seen with subarachnoid hemorrhage from a fenestration-aneurysm of the supraclinoid internal carotid artery (ICA).

Case Report

A 41-year-old woman was seen at an outside hospital with acute onset of an "exploding" headache accompanied by nausea, vomiting, photophobia, and neck stiffness. There was no history of trauma or illness. Examination showed an afebrile, acutely uncomfortable patient, fully alert and oriented. Motor and sensory examinations, cranial nerve function, and funduscopic examination were normal. A computed tomographic (CT) scan was interpreted as normal, and a diagnosis of viral meningitis was entertained. Lumbar puncture yielded bright red spinal fluid, and the diagnosis was changed to subarachnoid hemorrhage.

Over the next 2 weeks the patient remained stable with no impairment of consciousness. Occasional left face and hand numbness, slight left facial weakness, and intermittent left extensor plantar response were noted. Nausea, neck rigidity, and headache diminished, with residual dull pain behind the right eye.

A cerebral angiogram 2 days after admission (figs. 1A and 1B) was interpreted as normal, with mention of superimposed vessels projecting over the distal right ICA. Another angiogram on hospital day 16 was thought to show an unusual right posterior communicating artery-origin aneurysm. The two angiograms were reviewed at our institution, and the suggestion of a small aneurysm associated with fenestration of the right supraclinoid ICA was made. A third angiogram with oblique positioning appeared to confirm this morphology (figs. 1C and 1D).

A craniotomy was performed on hospital day 19. A small, very thin-walled aneurysm was found within a short fenestration of the right supraclinoid ICA. The aneurysm arose with a broad base from the larger of the two channels at the proximal end of the fenestration. It was not possible to selectively clip the aneurysm neck, and the dome was wrapped with gauze and muscle. The patient made an excellent recovery and was discharged 2 weeks after surgery. She was still asymptomatic after 1 year of follow-up.

¹Department of Radiology, Metropolitan Medical Center, 900 S. Eighth St., Minneapolis, MN 55404.
The association of aneurysms with fenestration is uncommon (table 1). Vertebral artery fenestration has coexisted with intracranial aneurysm in about 20% of case reports, but all of the aneurysms have been remote from the fenestration [3]. Seven of 11 reported cases of angiographically demonstrated basilar artery fenestration have had aneurysms at the fenestration site [5–7, 11, 17–20]. An aneurysm was found within an anterior cerebral artery fenestration in two of 38 recorded autopsy and angiographic cases [4, 8–11, 21]. No instance of true middle cerebral artery fenestration has been reported with an aneurysm at the fenestration, but simple duplication of the middle cerebral artery was associated with adjacent aneurysm in four patients [22–24].

Subarachnoid hemorrhage from ruptured fenestration aneurysms is rare. This is the seventh such case, with five previous instances of ruptured basilar artery fenestration aneurysms [5, 7, 17–19] and a recent report of a ruptured anterior cerebral artery fenestration aneurysm [21].

The morphology of intracranial fenestration aneurysms has been strikingly similar regardless of site. In all cases a small aneurysm has arisen at the proximal end of a short fenestrated segment. The aneurysm typically originates on the inner aspect of the bifurcation and points distally, cradled between the limbs of the artery (fig. 2). Angiographers familiar with fenestration aneurysms will recognize their characteristic morphology in suspicious areas of vascular overlap. Although the proximal basilar artery is the most important site for these lesions, they may occur elsewhere, as illustrated in our case.

TABLE 1: Summary of Prior Reports of Fenestration-Aneurysms

<table>
<thead>
<tr>
<th>Fenestrated Artery [refs.]</th>
<th>No. of Cases</th>
<th>With Aneurysm at Site</th>
<th>With Aneurysm Rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebral [3, 11, 15, 16]</td>
<td>57*</td>
<td>0†</td>
<td>0</td>
</tr>
<tr>
<td>Anterior cerebral [4, 8–11, 21]</td>
<td>38</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Middle cerebral [4, 9–14]</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Internal carotid [1, 2]§</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Predominantly Japanese literature.
† Twelve were associated with aneurysms elsewhere.
§ By angiography: autopsy incidence ranges from 1% to 5%.
§ Cervical segment.

REFERENCES

1969: 537–596