Oculocerebrorenal syndrome: case report with CT and MR correlates.

L A O'Tuama and D W Laster

*AJNR Am J Neuroradiol* 1987, 8 (3) 555-557

http://www.ajnr.org/content/8/3/555.citation

This information is current as of February 22, 2024.
Oculocerebrorenal Syndrome: Case Report with CT and MR Correlates

Lorcan A. O'Tuama and D. Wayne Laster

We report a detailed imaging investigation of the oculocerebrorenal syndrome (OCRS), or Lowe's syndrome. Our study includes the first detailed account of the cranial CT features, as well as the first MR imaging observations. A combination of soft-tissue and bony abnormalities may allow a specific radiographic separation of this disorder from other diseases causing the CT appearance of leukencephalopathy. Also, the radiographic features cast new light on the neuropathologic basis of OCRS.

Case Report

A 3⅓-year-old boy presented for cranial CT because of profound developmental delay and recurrent seizures. He was the 3.6-kg product of a full-term gestation, complicated by breech presentation requiring cesarean section. Delivery took place through meconium-stained liquor, and low Apgar scores were noted. By 2½ months, bilateral cataracts with congenital glaucoma, hypotonia, and severe developmental delay were evident. Generalized and partial seizures began at 4 months and continued despite phenobarbital treatment. Multiple long-bone fractures also occurred within the first year of life. A diagnosis of OCRS was made in early infancy. Family history was negative for cancer, renal disease, epilepsy, and congenital defects.

Physical examination showed a youngster with marked developmental delay and recurrent seizures. He was the 3.6-kg product of a full-term gestation, complicated by breech presentation requiring cesarean section. Delivery took place through meconium-stained liquor, and low Apgar scores were noted. By 2½ months, bilateral cataracts with congenital glaucoma, hypotonia, and severe developmental delay were evident. Generalized and partial seizures began at 4 months and continued despite phenobarbital treatment. Multiple long-bone fractures also occurred within the first year of life. A diagnosis of OCRS was made in early infancy. Family history was negative for cancer, renal disease, epilepsy, and congenital defects.

Physical examination showed a youngster with marked developmental delay and recurrent seizures. He was the 3.6-kg product of a full-term gestation, complicated by breech presentation requiring cesarean section. Delivery took place through meconium-stained liquor, and low Apgar scores were noted. By 2½ months, bilateral cataracts with congenital glaucoma, hypotonia, and severe developmental delay were evident. Generalized and partial seizures began at 4 months and continued despite phenobarbital treatment. Multiple long-bone fractures also occurred within the first year of life. A diagnosis of OCRS was made in early infancy. Family history was negative for cancer, renal disease, epilepsy, and congenital defects.

Physical examination showed a youngster with marked developmental delay and recurrent seizures. He was the 3.6-kg product of a full-term gestation, complicated by breech presentation requiring cesarean section. Delivery took place through meconium-stained liquor, and low Apgar scores were noted. By 2½ months, bilateral cataracts with congenital glaucoma, hypotonia, and severe developmental delay were evident. Generalized and partial seizures began at 4 months and continued despite phenobarbital treatment. Multiple long-bone fractures also occurred within the first year of life. A diagnosis of OCRS was made in early infancy. Family history was negative for cancer, renal disease, epilepsy, and congenital defects.

Physical examination showed a youngster with marked developmental delay and recurrent seizures. He was the 3.6-kg product of a full-term gestation, complicated by breech presentation requiring cesarean section. Delivery took place through meconium-stained liquor, and low Apgar scores were noted. By 2½ months, bilateral cataracts with congenital glaucoma, hypotonia, and severe developmental delay were evident. Generalized and partial seizures began at 4 months and continued despite phenobarbital treatment. Multiple long-bone fractures also occurred within the first year of life. A diagnosis of OCRS was made in early infancy. Family history was negative for cancer, renal disease, epilepsy, and congenital defects.

CT showed striking abnormalities on the images derived from both bone and brain windows. Marked scalloping of the calvarial bones was seen especially in the occipital regions. The appearance had some similarity to Lückenschädel. However, the patient’s age effectively excludes consideration of this condition. Furthermore, the features of type II Chiari malformation, often associated with Lückenschädel, were absent. Calvarial deformity may also be caused by craniosynostosis [6]. Our patient showed no direct radiographic evidence of craniosynostosis, and commonly associated abnor-

Received March 20, 1985; accepted after revision August 6, 1985.

Both authors: Department of Radiology, The Bowman Gray School of Medicine of Wake Forest University, 300 South Hawthorne Rd., Winston-Salem, NC 27103. Address reprint requests to D. W. Laster.

Fig. 1.—A, Contiguous uninfused CT images show prominent periventricular white-matter lucency and increased convolutional markings. B, Top row: Contiguous 10-mm-thick T2-weighted MR images (TE = 80 msec, TR = 3000 msec). Patchy, irregular, round, abnormal areas of high signal intensity are present in periventricular white matter. Bottom row: Contiguous 10-mm-thick slightly T1-weighted MR images (TE = 40 msec, TR = 800 msec) fail to show abnormal signal from white matter. (See discussion in text.)

malities of the petrous-sphenoid angle and brain abnormalities were absent.

The soft-tissue CT abnormalities comprised mild, generalized ventricular dilatation with extensive periventricular decrease in density. The sulci over the upper cerebral convexities appeared normal, and there was no disproportionate enlargement of the temporal horns. These changes show no major distinguishing features from those described in a wide variety of other leukoencephalopathies, such as multiple sclerosis [7], progressive multifocal leukoencephalopathy [8], and metachromatic leukodystrophy [9]. None of these conditions, however, shows the calvarial abnormalities we have found in OCRS.

The marked calvarial changes, which extended into the upper cranial vault, clearly exceeded the milder degrees of bone scalloping sometimes seen in normal children. Our patient did not show other clinical features, such as prolonged recumbency in infancy or sudden growth acceleration, that might modify calvarial growth. Increased convolutional impressions are of further interest in a patient whose presumed reduced brain growth would predict the opposite abnormality of skull development. Thus, the calvarial changes of OCRS cannot be explained, at least in the present case, as a secondary phenomenon. These features may aid in radiologic differentiation of this disorder from other conditions causing decreased white-matter density. Without pathologic material, which is not available at this time, the significance of the MR findings is not known, except that these lesions represent an increase in the T2 relaxation time.

Striking variability prevails in published reports of the neuropathologic features of OCRS. Cerebral malformations (e.g., smallness of the superior temporal gyri, splenium, and medical lemnisci) are noted by some authors [10] but not by others [3, 11, 12]. Some [13] have even failed to find consistently specific neuropathologic abnormalities. Thus, extant reports fail to provide a consistent morphologic basis for a disorder that shows the clear clinical behavior of a progressive metabolic encephalopathy. In the case of other leukoencephalopathies [14], CT abnormalities correlate closely with the existence and even the detailed anatomic distribution of the underlying neuropathologic findings. Thus, the detailed imaging characteristics of OCRS reported here are important in validating and categorizing its neuropathologic place among the leukodystrophies.

REFERENCES