Temperature changes caused by MR imaging of the brain with a head coil.

F G Shellock and J V Crues

http://www.ajnr.org/content/9/2/287

This information is current as of August 16, 2024.
Temperature Changes Caused by MR Imaging of the Brain with a Head Coil

Tissue heating caused by exposure to RF radiation is a primary safety concern in MR imaging. Therefore, to determine temperature changes caused by high field strength MR imaging of the brain with a head coil, we measured body and skin temperatures in 35 patients immediately before and after clinical MR imaging. MR imaging was performed with a 1.5 T MR system using a 28-cm, open-bore RF transmit/receive head coil specifically designed for examinations of the brain. The average body temperature was 36.6 ± 0.2°C before MR imaging and 36.6 ± 0.2°C immediately afterward (mean ± SD, p = not significant). The average forehead skin temperature increased from 32.6 ± 0.6 to 32.8 ± 0.5°C (p < .01), and the average outer canthus skin temperature increased from 32.1 ± 0.6 to 32.7 ± 0.6°C (p < .01) after MR imaging. The highest skin temperature recorded was 34.2°C, and the largest temperature change was +2.1°C. There were no statistically significant changes in the average skin temperatures of the upper arm and hand.

We conclude that patients undergoing MR imaging of the brain with a head coil at the RF radiation exposure we studied experience no significant changes in average body temperature and statistically significant increases in local (i.e., areas within the head coil) skin temperatures. The observed elevations in skin temperatures were physiologically inconsequential.

MR imaging requires exposing subjects to static, gradient, and RF electromagnetic fields. Tissue heating, which is believed to be caused predominantly by absorption of RF energy, is a primary safety concern in MR imaging [1–3]. Excessive increases in body and/or skin temperatures can occur if the total RF power absorbed by biological tissues is sufficient to overwhelm head-dissipating mechanisms [4, 5].

Little is known about the thermophysiologic consequences of MR imaging in the clinical setting. Since one of the most common MR imaging examinations involves imaging the brain with a head coil, we sought to characterize the temperature responses of patients undergoing this type of diagnostic procedure.

Materials and Methods

Thirty-five patients referred for MR imaging of the brain for suspected disease were studied under a protocol approved by the Institutional Review Board. There were 19 males and 16 females, ages 13 to 87 years old (average age, 48 years). All patients were thoroughly screened (i.e., no pacemakers, aneurysm clips, etc.) to determine if they could safely undergo MR imaging.

A 1.5-T superconducting magnet* operating at 64 MHz for proton imaging was used in this investigation along with a 28-cm open-bore, linear drive, RF transmit/receive coil specifically designed for head imaging.

The MR imaging protocol used conventional RF pulse sequences, as follows: spin echo, sagittal plane, TR = 600, TE = 25, acquisition matrix = 128 × 256, slice thickness = 10 mm, average number of slices = 20, average imaging time = 2:40 min; spin echo, axial plane, TR = 2000, TE = 30 and 60, acquisition matrix = 256 × 256, slice thickness = 5 mm, average number of slices = 40, average imaging time = 8:40 min.

* Signa MR system, General Electric Co., Milwaukee, WI.
The Signa MR system is equipped to monitor and display the estimated whole body average and local specific absorption rates (SAR) for each patient based on the subject's weight and the scan parameter information [15]. The estimated whole body average SAR for the above imaging protocol was 0.06 W/kg and the local SAR was 2.54 W/kg. The Food and Drug Administration recommends that exposure to RF power during MR imaging should not exceed a whole body average SAR of 0.4 W/kg or 2.0 W/kg in any 1 g of tissue (i.e., local SAR). Note that the scan parameters used in this study were well below the whole body average SAR but slightly above the local SAR recommended by the FDA.

Physiological Measurements

Either most physiological monitoring devices are adversely affected by the electromagnetic fields used during MR imaging or the presence of the monitors can distort the image quality by producing unwanted artifacts [6, 7]. Therefore, all the instruments used in this investigation were thoroughly evaluated in pilot studies before clinical use to ensure that there were no unfavorable interactions between the monitors and the MR imaging system. Calibration procedures were performed on a frequent and regular basis.

Body Temperature. Since we were particularly concerned about temperature changes that occurred within the immediate area of the head coil, body temperature was measured in the sublingual pocket. The sublingual pocket is the portion of the oral cavity that has the warmest and most stable temperature, located near the vasculature at the joint of the tongue and the floor of the mouth [8]. Temperatures were obtained with an electronic thermometer that has an accuracy and resolution of 0.1°C.

Skin Temperature. Skin temperatures were obtained with a non-contact, fast-response (i.e., less than 0.1 sec), infrared thermometer [9]. The resolution and accuracy of this instrument is 0.1°C. Skin temperatures were measured in less than 30 sec from the following sites: forehead, outer canthus, upper arm, and hand. These skin temperature sites were selected in an attempt to obtain representative information from surface areas located in the immediate vicinity of the RF power deposition within the head coil (i.e., outer canthus and forehead) as well as from remote, peripheral surface areas (i.e., upper arm and hand).

Heart Rate and Blood Pressure. Since the circulatory system is involved in the regulation of thermal responses [10], heart rate and blood pressure (systolic and diastolic) were determined noninvasively with an Omega 1400 blood pressure monitor. This monitor provides semicontinuous recordings of heart rate and blood pressure by using the oscillometric technique. The monitor was modified for use during MR imaging by the addition of an 18-ft pneumatically filled hose, which positioned the electronic components at a magnetic fringe field of approximately 200 G [7]. Heart rate and blood pressure measurements were not attenuated by the extra length of hose. The metal couplings of the blood pressure cuff were replaced by plastic fittings.

Statistical Analysis

Variables obtained before MR imaging were compared with those obtained afterward by means of a standard paired Student t test [11]. Data are reported as mean ± 1 SD.

Results

The average body temperature measured in the sublingual pocket was unchanged after MR imaging of the brain with the head coil (Fig. 1). There was a statistically significant increase (p < .01) in the average skin temperatures obtained from the forehead and outer canthus while the average skin temperatures of the upper arm and hand were essentially unchanged (Fig. 1). The highest temperature measured on any skin surface was 34.2°C (measured at the outer canthus site) and the largest change in skin temperature we observed was +2.1°C (measured at the outer canthus site).

None of the patients had evidence of any temperature-related cutaneous flushing or erythema after MR imaging of the head with the head coil. Fourteen (40%) of the 35 patients had observable signs of sweat on their forehead. None of the patients reported feeling uncomfortable as a result of the temperature changes.

There was a statistically significant decrease (p < .01) in the average heart rate, with an average change of 4 beats/min (Fig. 2). There was also a statistically significant decrease (p < .01) in the average systolic and diastolic blood pressures, with average changes of 11 and 5 mm Hg, respectively (Fig. 2).

Fig. 1.—Average body and skin temperatures before and after MR of the brain at 1.5 T using a head coil (n = 35).

1 Mark X electronic thermometry system, Electromedics, Englewood, CO.
2 Medi-Therm, Everest Interscience, Tustin, CA.
3 In Vivo Research Laboratories, Broken Arrow, OK.
does not appear to present a potential problem with tissue (i.e., outer canthus and forehead) to effect heat gain.

In experiments (i.e., without RF), it is doubtful that the increases in skin temperatures would exceed this recommended exposure criterion. However, we feel that the safety guidelines provided by the NRPB are too conservative and do not take into account important aspects of temperature regulation.

Although we agree with the NRPB’s choice of using temperature parameters to indicate the acceptable levels of exposure to RF radiation (because patients will have different temperature responses to a heat load depending on their heat-dissipating capabilities, which in turn are dependent on the ambient conditions, the presence of clinical conditions associated with heat intolerance, the amount of body fat, age, etc.), we disagree with the NRPB’s recommended limit of an increase of 1°C for both rectal and skin temperatures because skin temperature is considerably more labile than internal body temperature. From a thermal tolerance standpoint, an increase of 1°C in skin temperature is relatively insignificant and does not compare with a 1°C increase in body temperature.

Recently, Kido et al. [18] examined temperature responses to high-field MR imaging of the brain in normal volunteers and reported that the "mean temperature rise (measured in the axilla) was always less than 0.2°C." However, it is difficult to compare the results of our study with those of Kido et al. [18] for the following reasons: (1) it is unknown whether a head coil was used during the imaging procedure, (2) temperature was measured in the axilla, which is not considered a representative site of either body or skin temperature, and (3) a conventional thermistor probe was used, which is an unsatisfactory technique for measuring temperature during exposure to RF radiation because the presence of wire leads are known to distort the field and can also cause concentrations of RF power [19, 20].

Heart Rate and Blood Pressure. Heart rate and blood pressure measured at the initiation of MR imaging of the brain
with a head coil were significantly higher than those recorded at the completion of the scan. Kido et al. [18] reported a significant decrease in heart rate but no change in mean blood pressure during MR imaging of the brain. In our previous study [15], we did not observe any statistically significant changes in heart rate or blood pressure during MR imaging with a body coil at RF radiation exposures (i.e., whole body average SAR) between 0.42–1.20 W/kg, during which both body and skin temperatures increased significantly.

At first glance, it appears as though cardiovascular responses to MR imaging are somewhat confusing. However, it is known that heart rate and blood pressure elevations can occur in patients awaiting diagnostic tests as a result of tension and apprehension caused by the imminence of the clinical procedure [21, 22]. The relative changes in heart rate and blood pressure observed in this study may be partially explained by a similar mechanism. The fact that there were no apparent changes in heart rate and blood pressure in our previous study may be due to slight, off-setting increases in these parameters as a cardiovascular response to the increases in body and skin temperatures.

Since cardiovascular changes may also result from exposure to static magnetic fields [23-25], we cannot entirely rule out the possibility that heart rate and blood pressure were altered by the high-field MR imaging system used in this study. Further examination of static magnetic field effects on the cardiovascular system is warranted.

Whatever the cause, the MR imaging clinician should be aware of this observed phenomenon. The relative increases in heart rate and blood pressure at the beginning of MR imaging have important implications for cardiac-gated studies (i.e., repetition time is dependent on heart rate) as well as for any interventional studies involving MR imaging in which cardiovascular parameters are evaluated.

Potential Limitations. A potential limitation of this study is related to our assumption that there was enough “thermal inertia” in human tissues to allow meaningful temperature data to be obtained immediately before and after MR imaging. Since this does appear to be a reasonable presumption [26], there should only have been a minimal amount of cooling of the skin between the time the scanning procedure was completed and the short period (i.e., 60 sec) that transpired before skin temperatures were measured. Therefore, it is unlikely that significant temperature changes would have occurred.

Optimally, continuous, real-time temperature recordings should be determined during investigations of tissue heating associated with MR imaging. However, as previously indicated, it is not possible to use conventional thermistors or thermocouples in the electromagnetic environment used for MR imaging because (1) the thermal conductivity of the electrical leads can cause a perturbation of the temperature measurements (particularly the surface temperature measurements), (2) the metallic leads attract RF noise and can be heated artificially by induced eddy currents, (3) the RF field is distorted by the presence of metallic leads, and (4) it is possible for the static magnetic field to perturb the temperature recording as well as to disrupt the operation of the measurement device [19, 20]. Recently, a fluoroptic thermometry instrument has been developed that is compatible with MR imaging systems [20] and we intend to use this instrument in future studies.

Another limitation is the fact that we did not evaluate temperature responses to an exceptionally high exposure to RF radiation. One of the primary intentions of this study was to determine the thermophysiological responses to a typical MR procedure in a clinical situation; therefore, we did not choose to vary the pulsing parameters in order to deposit additional RF power. It is possible that other scanning procedures may be substantially more taxing on a patient if a higher exposure to RF radiation is absorbed for a longer period of time.

In conclusion, we have observed that, within the constraints of this study, there is no change in average body temperature and statistically significant increases in local skin temperatures within the head coil during high field strength MR imaging of the brain. In relative terms, the skin temperature changes we observed were not considered harmful to the patients. However, additional studies examining temperature responses to MR imaging are needed to determine the overall safety of MR imaging with respect to thermally induced changes, especially since it is possible to perform imaging procedures at RF power levels higher than the one evaluated in this study.

ACKNOWLEDGMENTS

We gratefully acknowledge the help provided by all the magnetic resonance imaging technologists at Cedars-Sinai Medical Center and by the General Electric service engineers. We are also indebted to Daniel Joe Schaefer and Christopher J. Gordon for their critique of this manuscript.

REFERENCES

7. Shellock FG. Monitoring during MRI: an evaluation of the effect of high-field MRI on various patient monitors. Med Electronics 1986;100:93–97
14. National Council on Radiation Protection and Measurements. Thermoregulat-
ory responses in human beings. In: NCRP Report No. 86, Biological
effects and exposure criteria for radiofrequency electromagnetic fields,
Bethesda: National Council on Radiation Protection and Measurements,
1985:221–250
15. Shellock PG, Crues JV. Temperature, heart rate, and blood pressure
changes associated with clinical MR imaging at 1.5 T. Radiology 1987;
163:259–263
16. Hardy JD, Wolff HG, Goodell H. Pain sensations and reactions. New York:
Hafner, 1967
17. National Radiological Protection Board ad hoc Advisory Group on Nuclear
Magnetic Clinical Imaging. Revised guidelines on acceptable limits of
exposure during nuclear magnetic resonance clinical imaging. Br J Radiol
1983;56:974–977
changes during high field strength MR imaging. AJNR 1987;8:263–266
19. National Council on Radiation Protection and Measurements. Radiofre-
quency electromagnetic fields. In: NCRP Report No. 67, Quantities and
units, biophysical interaction, and measurements. Bethesda: National
101:84–91
21. Hickam JB, Gargill WH, Golden A. Cardiovascular reactions to emotional
stimuli. Effect on the cardiac output, arteriovenous oxygen difference,
arterial pressure, and peripheral resistance. J Clin Invest 1948;27:290–
298
22. Konzett H. Cardiovascular parameters and methods of measuring emo-
York: Raven, 1975:369–378
23. Vardanyan VA. Effect of a magnetic field on blood flow. Biophizika
1973;18:491–496
24. Beischer DE, Knepton JC. Influence of strong magnetic fields on the
a 2-T magnetic field on human cardiac rhythm. Radiology 1986;161:260–
281 (abstr)
26. Adar ER, Berglund LG. On the thermoregulatory consequences of NMR