Direct Sagittal CT in the Evaluation of Temporal Bone Disease

Mahmood F. Mafee, Arvind Kumar, Christina N. Tahmoressi, Barry C. Levin, Charles F. James, Robert Kriz and Vlastimil Capek

AJNR Am J Neuroradiol 1988, 9 (2) 371-378
http://www.ajnr.org/content/9/2/371
Direct Sagittal CT in the Evaluation of Temporal Bone Disease

Mahmood F. Mafee1
Arvind Kumar2
Christina N. Tahmoressi1
Barry C. Levin2
Charles F. James1
Robert Kriz1
Vlastimil Capek1

This article appears in the March/April 1988 issue of AJNR and the June 1988 issue of AJR.

Received February 20, 1986; accepted after revision August 19, 1987.

This work was supported in part by General Electric clinical application grant CT 2-5-37364.

1 Department of Radiology, University of Illinois College of Medicine, and the University of Illinois Eye and Ear Infirmary, 1855 W. Taylor St., Chicago, IL 60612. Address reprint requests to M. F. Mafee.

2 Department of Otolaryngology—Head and Neck Surgery, University of Illinois College of Medicine, and the University of Illinois Eye and Ear Infirmary, Chicago, IL 60612

AJR 9:371-378, March/April 1988
0361-803X/88/0902-0371
© American Roentgen Ray Society

The human temporal bone is an extremely complex structure. Direct axial and coronal CT sections are quite satisfactory for imaging the anatomy of the temporal bone; however, many relationships of the normal and pathologic anatomic detail of the temporal bone are better seen with direct sagittal CT sections. The sagittal projection is of interest to surgeons, as it has the advantage of following the plane of surgical approach. This article describes the advantages of using direct sagittal sections for studying various diseases of the temporal bone. The CT sections were obtained with the aid of a new headholder added to our GE CT 9800 scanner.

The direct sagittal projection was found to be extremely useful for evaluating diseases involving the vertical segment of the facial nerve canal, vestibular aqueduct, tegmen tympani, sigmoid sinus plate, sinodural angle, carotid canal, jugular fossa, external auditory canal, middle ear cavity, infratemporal cells, external auditory meatus, jugular foramen, middle fossa, petrous apex, semicircular canals, and temporomandibular joint.

CT has contributed greatly to an understanding of the complex anatomy and spatial relationship of the minute structures of the hearing and balance organs, which are packed into a small pyramid-shaped petrous temporal bone [1, 2]. In the past 6 years, high-resolution CT scanning has been rapidly replacing standard tomography and has proved to be the diagnostic imaging method of choice for studying the normal and pathologic details of the temporal bone [3-14]. CT of the temporal bone should always include at least two projections [5, 13, 15, 16]. The use of a single projection may lead to serious mistakes, since structures parallel to the plane of section are seen only partially or not at all [13]. The basic projection is of course the direct axial (horizontal) plane, since this is the most suitable and practical as well as the easiest projection to obtain for the baseline study of the temporal bone [5, 13]. Direct coronal sections can be obtained with many scanners; however, direct sagittal sections are hard or impossible to obtain because of the limitations of the CT scanners. The purpose of our study was to review the potential of direct sagittal CT (obtained with a new headholder attached to our GE 9800 CT scanner) [17] in the diagnostic investigation of the diseases of the temporal bone and to demonstrate the important role of the sagittal projection in revealing certain anatomic and pathologic details of the temporal bone.

Materials and Methods

Although direct sagittal CT scans have been obtained in over 200 patients, our retrospective review encompassed a 2-year period during which 22 patients had surgical or clinical confirmation of CT findings that were seen best on direct sagittal CT scans (Table 1). The sagittal plane was scanned along with the axial or coronal plane. The direct sagittal plane was recommended on the basis of clinical histories and CT findings in the axial or coronal plane. Reasons for direct sagittal CT included the need for evaluating the vertical portion of the facial nerve canal, vestibular aqueduct, tegmen tympani, sigmoid sinus plate, external auditory canal, and temporomandibular joint.
<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age</th>
<th>Gender</th>
<th>Clinical Diagnosis</th>
<th>CT Diagnosis</th>
<th>Final Diagnosis</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>M</td>
<td>Tender right mastoid</td>
<td>Aggressive infection vs neoplasm</td>
<td>Aggressive fibromatosis</td>
<td>Erosion of FNC and sigmoid plate best seen on sagittal scans</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>M</td>
<td>Hearing loss, middle ear mass</td>
<td>Mass in round window niche</td>
<td>Cochlear schwannoma</td>
<td>Location of tumor best seen on sagittal scans</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>F</td>
<td>Bulging red mass in right external ear canal; R/O glomus</td>
<td>Epidermoid cyst vs glomus</td>
<td>Cholesterol granuloma</td>
<td>Extent and location of cyst best seen on sagittal scans</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>M</td>
<td>S/P mastoidectomy, AS; R/O RC</td>
<td>Brain herniation and RC in mastoid bowl</td>
<td>Brain herniation and scar tissue</td>
<td>Tegmental defect best seen on sagittal scans</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>F</td>
<td>S/P mastoid surgery, AU; blue mass, AD</td>
<td>RC vs cholesterol granuloma, AD</td>
<td>Cholesterol granuloma, AD</td>
<td>Lesion best seen on sagittal scans</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>F</td>
<td>Mastoid surgery, AU</td>
<td>RC and encapsulated cyst, AS</td>
<td>Cholesterol granuloma</td>
<td>Bulging cyst best seen on sagittal scans</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>F</td>
<td>Sensorineural hearing loss, AD; R/O inner ear anomaly</td>
<td>Large vestibular aqueduct, AD</td>
<td>Large vestibular aqueduct</td>
<td>Sagittal view is view of choice for vestibular aqueduct</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>F</td>
<td>Profound hearing loss AS; R/O inner ear anomaly</td>
<td>Large vestibular aqueduct, AS</td>
<td>Large vestibular aqueduct</td>
<td>Sagittal view is view of choice for vestibular aqueduct</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>F</td>
<td>Hearing loss, AS; R/O congenital ear anomaly</td>
<td>Large vestibular aqueduct, AD</td>
<td>Large vestibular aqueduct</td>
<td>Sagittal view is view of choice for vestibular aqueduct</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>M</td>
<td>Facial deformity; hearing loss, AU</td>
<td>Deformity of ossicles, AU; large vestibular aqueduct, AD</td>
<td>No surgery planned</td>
<td>Large aqueduct best seen on sagittal scans</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>M</td>
<td>Car accident; CHL, facial paralysis, R/O Fx</td>
<td>Ossicular dislocation; Fx, left temporal bone; Fx, FNC</td>
<td>Fx, FNC; ossicular dislocation</td>
<td>Fx of FNC best seen on sagittal scans</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>M</td>
<td>Facial nerve paralysis, CHL, AS; Hx of trauma</td>
<td>Fx, dislocated ossicles, AS; Fx, FNC & tegmen</td>
<td>Fx, dislocation, AS</td>
<td>Fx of tegmen and FNC best seen on sagittal scans</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>M</td>
<td>Head trauma: CHL; R/O Fx, ossicular, dislocation</td>
<td>Fx, dislocated ossicles</td>
<td>Fx, dislocated ossicles</td>
<td>Dislocation best seen on axial and sagittal scans</td>
</tr>
<tr>
<td>14</td>
<td>45</td>
<td>F</td>
<td>Tumor of EAC</td>
<td>Tumor of EAC</td>
<td>Squamous carcinoma of EAC</td>
<td>Extent of tumor best seen on axial and sagittal scans</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
<td>F</td>
<td>Dislocation of right and left TMJ disks</td>
<td>Dislocation, both TMJ disks confirmed at surgery</td>
<td>Dislocation confirmed at surgery</td>
<td>Sagittal view is view of choice for TMJ</td>
</tr>
<tr>
<td>16</td>
<td>29</td>
<td>F</td>
<td>Dislocation of right TMJ disk</td>
<td>Dislocation</td>
<td>Dislocation confirmed at surgery</td>
<td>Sagittal view is view of choice for TMJ</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>M</td>
<td>Vascular mass, AU</td>
<td>High jugular bulb, AU</td>
<td>Dehiscent bone of hypotympanic floor; protruding jugular bulb, AU</td>
<td>Sagittal view is important view for jugular fossa</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>M</td>
<td>COM, poly, AS</td>
<td>COM, AU; cholesteatoma, AS</td>
<td>COM, AU; cholesteatoma, AS</td>
<td>Erosion of ATS best seen on sagittal scans</td>
</tr>
<tr>
<td>19</td>
<td>42</td>
<td>M</td>
<td>Cholesteatoma, AS; facial paresis</td>
<td>Cholesteatoma, AS; normal FNC</td>
<td>Cholesteatoma, AS</td>
<td>Normal FNC; facial paresis resolved</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>F</td>
<td>Cholesteatoma, AS</td>
<td>Large cholesteatoma, AS, with defect of tegmen</td>
<td>Cholesteatoma, AS; temporal defect</td>
<td>Tegmental defect best seen on sagittal scans</td>
</tr>
<tr>
<td>21</td>
<td>40</td>
<td>F</td>
<td>COM, AU; maximum hearing loss, AU; R/O tympanosclerosis</td>
<td>Cholesteatoma, AU; fistula, LSC, AD; erosion of sigmoid plate, AD</td>
<td>Cholesteatoma, fistula, LSC, AD; surgery planned for AS</td>
<td>CT enabled definitive Dx; extent of lesion best seen on sagittal scans</td>
</tr>
<tr>
<td>22</td>
<td>55</td>
<td>F</td>
<td>CHL, AD; R/O tympanosclerosis</td>
<td>attic cholesteatoma</td>
<td>Intratympanic meningioma</td>
<td>Ectopic intratympanic meningioma</td>
</tr>
</tbody>
</table>

Note.—FNC = facial nerve canal; R/O = rule out; S/P = status post; AS = left ear; RC = recurrent cholesteatoma; AU = both ears; AD = right ear; CHL = conductive hearing loss; Fx = fracture; Hx = history; EAC = external auditory canal; TMJ = temporomandibular joint; COM = chronic otomastoiditis; ATS = anterior tympanic spine; LSC = lateral semicircular canal; Dx = diagnosis.
The group comprised 10 men and 12 women 5-70 years old. The CT scans were obtained on a GE CT/T 9800 unit by using 1.5-mm collimation with 0.25-mm² pixels and extended gray scales to 4000 H (+3,000-1,000 H). The sections were obtained at 1.5-mm intervals. The technique and methodology of direct sagittal CT scanning has been described in another article [17]. Contrast infusion (meglumine diatrizoate, 2 ml/kg body weight for children and a total of 150 ml for adults) was used in those patients suspected of having tumor of the temporal bone or acute suppurative infection of the ear, including infected cholesteatoma. In these cases additional sections (10 mm) of the head were also obtained to rule out possible intracranial complications.

Results

The radiographic and clinical findings in our patients are presented in Table 1. The sagittal CT scans were extremely useful in demonstrating the destruction of the sigmoid plate and facial nerve canal in a patient with aggressive fibromatosis of the mastoid (Fig. 1) and in showing the extension of a labyrinthine schwannoma into the round window niche in another patient (Fig. 2). In one patient with cholesterol granuloma of the middle ear, CT revealed a mass in the external canal and middle ear (Fig. 3). The exact extent of the mass and erosion of the anterior wall of the middle ear was demonstrated best on sagittal scans (Fig. 3B).

Three patients (cases 4-6) had previous mastoidectomies. In case 4 a large tegmental defect with associated brain herniation was demonstrated on sagittal and coronal CT sections (Fig. 4). The anatomic relationships of the mastoid cavity, tegmental defect, brain herniation, and facial nerve canal were better appreciated on sagittal scans (Fig. 4). In cases 5 and 6, CT revealed a large bulging mass in the mastoid cavity (Fig. 5); the masses were interpreted as recurrent cholesteatomas or cholesterol granulomas. At surgery both patients had cholesterol granulomas. The sagittal scans were most useful to the surgeon in demonstrating the relationship of these masses to the tegmen and sigmoid plate (Fig. 5B).

Four patients were suspected of having congenital ear anomalies (cases 7-10). Three of these (cases 7-9) had a large vestibular aqueduct, which was seen best on sagittal
One patient (case 10) had an anomaly of the ossicles and large vestibular aqueduct in both ears. In three patients with a history of trauma (cases 11–13), CT revealed fractures of the temporal bone. Sagittal CT scans were extremely helpful in evaluating the exact site of the fractures of the facial nerve canal (Fig. 7) and tegmen tympani (Fig. 8). The ossicular dislocation was best seen on sagittal and axial scans (Figs. 8A and 9). The sagittal plane was most
Fig. 6.—Case 7: large vestibular aqueduct. Direct sagittal CT scan shows marked enlargement of vestibular aqueduct (arrows). (Compare with normal vestibular aqueduct in Fig. 3B.)

Fig. 7.—Case 11: comminuted fracture of temporal bone with involvement of facial nerve canal. Direct sagittal CT scan shows linear fracture of mastoid (solid black arrow), which extends to and involves vertical segment of facial nerve canal (arrowhead). Bone fragment (open arrow) compressing facial nerve was confirmed at surgery. Note fracture of sigmoid plate (curved arrow) and fractures of retrofacial air cells. Increased soft tissue (S) in anterior tympanic cavity is from involvement of supratubal air cells and canal for tensor tympani. Clouding of supratubal and retrofacial air cells is from intraluminal and submucosal bleeding. Findings were confirmed at surgery.

Fig. 8.—Case 12: fracture of temporal bone with ossicular dislocation.
A, Direct sagittal CT scan shows fracture of anterior wall of external canal (black arrow) and posterosuperior dislocation of incus (white arrow).
B, Direct sagittal CT scan shows increased soft tissue in region of canal for tensor tympani with bone fragment (solid arrow). Note discontinuity of tegmen and fracture in region of geniculate ganglion (open arrow). Findings were confirmed at surgery.

Fig. 9.—Case 13: incudomalleal dislocation. Direct sagittal CT scan shows separation of malleus (m) and incus (i), Note undisplaced fracture of anterior wall of middle ear cavity (straight white arrow), pyramidal eminence (curved arrow), facial nerve canal (long black arrow), and lateral, superior, and posterior semicircular canals (short black arrows).

Fig. 10.—Case 14: squamous cell carcinoma of external auditory canal. Direct sagittal CT scan shows soft-tissue tumor (m) with erosion of inferior and anterior walls of external auditory canal. Isolated bone fragment (arrow).

In informative in demonstrating the tumor extent in a patient with squamous cell carcinoma of the external auditory canal (Fig. 10). Dislocation of the temporomandibular disk was demonstrated best on sagittal CT scans in cases 15 and 16 (Fig. 11). Protrusion of the jugular veins into the middle ear cavities from dehiscent jugular fossae and the relationship of jugular veins to the round window membranes were best evaluated on sagittal CT scans in a patient found to have a bluish mass behind both tympanic membranes (Fig. 12).

One patient (case 18) was diagnosed as having a small
attic cholesteatoma after CT showed erosion of the anterior tympanic spine, which was seen best on sagittal scans. Erosion of the facial nerve canal was clinically suspected in a patient with a cholesteatoma in the left ear. In this patient (case 19), CT revealed a large atticoantral cholesteatoma eroding the retrofacial air cells and thinning out the posterior margin of the proximal portion of the mastoid segment of the facial nerve canal. The anatomic relationships of the cholesteatoma and facial nerve canal were delineated best on sagittal scans. At surgery, the CT findings were confirmed, with the cholesteatoma eroding the retrofacial air cells but not extending into the facial nerve canal. One patient with a cholesteatoma (case 20) had erosion of the tegmen tympani, which was seen best on sagittal CT scans.

Two patients were clinically diagnosed as having tympanosclerosis (cases 21 and 22). In case 21, bilateral cholesteatomas were found with erosion of the lateral semicircular canal and sigmoid sinus plate. The sigmoid sinus plate defect was depicted best on sagittal scans. In case 22 (the second patient with the clinical diagnosis of tympanosclerosis), CT revealed the classic findings of an attic cholesteatoma, with erosion of the lateral attic wall, anterior tympanic spine, and ossicles. To our surprise, an intratympanic (ectopic) meningioma was found at surgery. In this patient, postoperative contrast-enhanced CT, including thin axial, coronal, and sagittal sections (superior for jugular fossa and sublabyrinthine air cells) of the posterior fossa and base of the skull and temporal bone, did not show any mass in the posterior fossa or base of the skull.

Discussion

The radiographic anatomy of the complex structures of the human temporal bone has always been a challenge to radiologists. The introduction of tomography in the late 1930s as a technique for body-section imaging was an important step in the radiographic delineation of the minute structures of the ear [18]. However, a practical application for studying the temporal bone was not available until 20 years later, when multidirectional tomographic units became commercially available [18, 19]. Before the introduction of high-resolution CT, complex-motion tomography was the diagnostic imaging method of choice for studying the anatomy and morphologic
alteration of the bony structures of the temporal bone and base of the skull [18, 19].

In the past 6 years CT has rapidly been replacing complex-motion tomography and has proved to be the diagnostic imaging method of choice for assessing the temporal bone [1-14]. Three prerequisites are necessary for the study of the temporal bone: high definition, thin sections, and multiple projections [13]. Direct axial and coronal CT sections are quite satisfactory for demonstrating the anatomy of the temporal bone; however, study of the axial or coronal sections should be supplemented by direct sagittal sections. The sagittal projection is of much interest to surgeons as it has the advantage of following the plane of surgical approach [19]. Many relationships of the structure of the temporal bone are better seen by studying direct sagittal CT sections of the temporal bone. This projection is particularly satisfactory for studying the normal and pathologic details of the mastoid segment of the facial nerve canal (Figs. 7, 13A, and 13B), ossicles (Figs. 8A, 9, and 13C), vestibular aqueduct (Figs. 3 and 6), tegmen tympani (Figs. 4A and 8B), sigmoid plate (Figs. 1 and 7), external auditory canal (tympanic bone) (Fig. 10), mastoid (Fig. 1), jugular fossa (Fig. 12A), carotid canal (Fig. 12B), supra-sublabyrinthine air cells (Figs. 8B and 9), and retrofacial air cells (Figs. 7 and 13A). We recommend the direct sagittal projection to evaluate the vestibular aqueduct (Fig. 6); fractures of the temporal bone (Figs. 7-9); patients with infranuclear facial paralysis; and diseases involving the round window niche (Fig. 2), tegmen tympani (Fig. 4A), sigmoid sinus plate (Fig. 7), carotid canal (Fig. 12B), jugular fossa (Fig. 12), external auditory canal (Fig. 10), and temporomandibular joint (Fig. 11). In our institution the sagittal projection has proved extremely valuable for assessing the extent of atticoantral cholesteatoma and its relationship to the sigmoid plate and tegmen tympani. This projection is essential for evaluation of the mastoid segment of the facial nerve canal (Figs. 1B and 7), vestibular aqueduct (Fig. 6), and temporomandibular joint (Fig. 11). In our institution, whenever a trans- or retrolabyrinthine surgical approach is planned, a preoperative sagittal CT scan of the temporal bone is obtained at the request of the surgeons so they can evaluate the relationship

Fig. 13.—A, Normal facial nerve canal. Direct sagittal CT scan shows entire mastoid segment of facial nerve canal (open arrow). Immediately below lateral semicircular canal (L) is posterior portion of tympanic segment of facial nerve canal. Note incus (i), malleus (m), anterior tympanic spine (white arrow), pyramidal eminence (white arrowhead), and low density of stapedius canal (black arrowhead) in front of facial nerve canal. (Compare with B.)

B, Normal facial nerve. Sagittal partial-saturation T1-weighted MR scan (repetition time = 800 msec, echo time = 25 msec) obtained with surface receiver coil shows superior semicircular canal (short arrow), posterior por tion of tympanic segment of facial nerve (curved arrow), mastoid (large arrowheads) and parotid (black arrows) segments of facial nerve. Note stapedius muscle (straight white arrows), which originates within pyramidal eminence in front of vertical (mastoid) portion of facial nerve. Small structure (small arrowhead) extending from facial nerve to stapedius muscle is believed to represent stapedius nerve.

C, Normal ossicles. Direct sagittal CT scan shows malleus (long arrow), incus (short arrow), inferior aspect of lateral wall of attic (arrowhead), and temporomandibular joint.

Fig. 14.—Case 15: dislocated right temporomandibular joint meniscus. Direct sagittal CT air-positive contrast arthrogram in open-mouth position shows dislocated disk (short arrow). Air is in superior (S) and inferior (i) joint spaces. Note stretching of retroliskal zone (long arrows).
of the jugular fossa to the internal auditory canal (Fig. 12B) and assess the relationship of the vertical segment of the facial nerve canal to the posterior wall of the external auditory (typanic sulcus) canal and sigmoid sinus plate (Fig. 13A).

The sagittal plane in general is complementary to the coronal and axial planes, since it shows the anterior to posterior aspects of structures seen laterally to medially on coronal sections (Fig. 3) and the inferior to superior aspects of structures seen anteriorly to posteriorly on axial sections (Fig. 2) [15, 16, 18]. In our series, the direct sagittal projection proved to be extremely valuable in several cases (Table 1). Therefore, we believe this projection should be used to complement the axial and coronal planes, depending on the disease and the anatomic details to be imaged.

Disadvantages of the direct sagittal technique are the additional radiation, time, and effort. In many cases, the information obtained with axial and sagittal planes may be sufficient, obviating coronal sections. In temporal bone fractures, lesions of the external auditory canal, and diseases involving the vestibular aqueduct, round window niche, round window membrane, tegmen tympani, and sigmoid sinus plate, axial and sagittal CT scans are recommended.

Sagittal CT is essential for evaluating lesions of the temporomandibular joint (Fig. 10). The demarcation between disk and retrolabial tissue (bilaminar zone) can be established easily on sagittal CT scans (Fig. 14). CT arthrography is an invasive method requiring technical skill and radiation exposure. In our institution, CT arthrography has proved to be a valuable and complementary diagnostic tool in the examination and treatment of patients with jaw dysfunction. The application of our sagittal head-holder is not limited to the temporal bone and temporomandibular joint. We have found it very useful for the evaluation of the other craniofacial structures, including sphenethmoid complex, sella turcica, and the orbits (Fig. 1A).

ACKNOWLEDGMENTS

We thank Ruben Stortzum for technical expertise and assistance in manufacturing the sagittal head-holder and Mari Salazar for secretarial assistance.

REFERENCES

18. Valvassori GE, Buckingham RA. Tomography and cross-sections of the ear. Stuttgart: George Thieme, 1975