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ORIGINAL RESEARCH
SPINE

Effect of the Suboccipital Musculature on Symptom Severity
and Recovery after Mild Traumatic Brain Injury

X S. Fakhran, X C. Qu, and X L.M. Alhilali

ABSTRACT

BACKGROUND AND PURPOSE: Neck musculature mass has been suggested as a biomechanical contributor to injury severity in mild
traumatic brain injury. We sought to determine how the cross-sectional areas of the suboccipital muscles affect symptom severity,
neurocognitive performance, and recovery time in patients with mild traumatic brain injury.

MATERIALS AND METHODS: Sixty-four consecutive patients with mild traumatic brain injury underwent MR imaging and serial neuro-
cognitive testing with the Immediate Post-Concussion Assessment and Cognitive Test. Cross-sectional areas of the rectus capitis posterior
musculature were retrospectively obtained at C1, and cross-sectional areas of the remaining 7 suboccipital muscles were measured at C2.
Cross-sectional area reproducibility was evaluated. Overall and individual muscle cross-sectional areas were correlated with symptom
severity, neuropsychological testing, recovery time, and headache.

RESULTS: Sixty-four patients with mild traumatic brain injury had imaging through C1, and 43 had imaging through C2. Reproducibility of
cross-sectional area measurements was substantial (correlation coefficients � 0.9517– 0.9891). Lower cross-sectional area of the rectus
capitis posterior minor was correlated with greater symptom severity (r � 0.596, P � .0001), longer recovery time (r � 0.387, P � .002), poor
verbal memory performance (r � 0.285, P � .02), and headache (r � 0.39, P � .001). None of the other cross-sectional areas were associated
with symptom severity, recovery time, neurocognitive testing, or headache.

CONCLUSIONS: In mild traumatic brain injury, the rectus capitis posterior minor is the only suboccipital muscle whose cross-sectional
area is associated with symptom severity and worse outcome. Given the unique connection of this muscle to the dura, this finding may
suggest that pathology of the myodural bridge contributes to symptomatology and prognosis in mild traumatic brain injury.

ABBREVIATIONS: �V � change in head velocity; ImPACT � Immediate Post-Concussion Assessment and Cognitive Test; mTBI � mild traumatic brain injury; rectus
capitis-PMaj � rectus capitis posterior major; rectus capitis-PMin � rectus capitis posterior minor

Mild traumatic brain injury (mTBI), often referred to as “con-

cussion,” is a common hazard in contact sports, with approx-

imately 3.8 million sports-related injuries documented each year.1

Despite the outwardly mild nature of these injuries, approximately

15% of patients with mTBI have persistent, often debilitating symp-

toms beyond 3 months, termed “postconcussion syndrome.”2

The underlying injury in mTBI is theorized to be related to

acceleration and deceleration of the brain within the cranial

vault.3 Animal models have shown that the severity of brain injury

is correlated with the change in head velocity (�V).4 Forces from

a large �V predominantly impact frequent locations of shear in-

juries associated with postconcussive syndrome.5

In computer models of mTBI, early neck resistance is key in

decreasing �V.6,7 As impact forces are proportional to �V,4,7 this

means that very small reductions in �V by the neck musculature

can result in a significant reduction in impact forces in regions

associated with postconcussive syndrome.

Supporting the finding of increased neck strength and de-

creased �V, studies have shown that increased neck muscle

strength results in decreased risk of postconcussion syndrome.8,9

However, increased overall neck strength has not resulted in al-

terations in �V during trauma in the experimental setting.10 This

finding raises the question of whether specific muscles rather than

overall strength are key to decreasing brain injury. Notably, mus-

cles resisting head movement have been found central in deter-

mining outcome after linear acceleration injuries in whiplash.11
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The suboccipital musculature is central to promoting and re-

sisting head motion, including flexion, extension, and rotation.12

The rectus capitis posterior major (rectus capitis-PMaj), rectus

capitis posterior minor (rectus capitis-PMin), semispinalis cervi-

cis, multifidus, semispinal capitis, and splenius capitis are head

extenders, while the longus colli and longus capitis are head flex-

ors. The rectus capitis-PMaj, inferior oblique capitis, and semi-

spinalis capitis are also involved in rotation. Because the cross-

sectional area of muscles has previously been shown to be

proportional to muscle strength,13,14 we sought to determine how

the cross-sectional area of the suboccipital muscles affects symp-

tom severity, neurocognitive performance, and recovery time in

patients with mTBI.

MATERIALS AND METHODS
Patient Selection and Image Acquisition
Our institutional review board approved this study with a waiver of

informed consent. All MR imaging examinations were performed

during the routine care of patients and were retrospectively reviewed.

We searched our electronic medical record to identify MR

imaging studies performed for mTBI. Radiology reports from

January 1, 2008, to July 31, 2013, were searched by using the key-

word “concussion.” Inclusion criteria were 10 –50 years of age,

English language proficiency, and mild TBI defined as witnessed

closed head trauma, no focal neurologic deficit, loss of conscious-

ness of �1 minute, and posttraumatic amnesia of �30 minutes.

Exclusion criteria were any abnormality on brain MR imaging as

defined by a fellowship-trained neuroradiologist, including mi-

crohemorrhage/shear injury on gradient sequence (3 patients),

the imaging not extending to C1 (4 patients), unavailable neuro-

cognitive Total Symptom Score (4 patients), the Total Symptom

Score being zero (3 patients), or excessive motion precluding ac-

curate measurements (3 patients).

Neurocognitive testing was performed at the time of presen-

tation, and the Immediate Post-Concussion Assessment Cogni-

tive Test (ImPACT), a computerized test measuring cognitive

function and postconcussion symptoms, was used. The ImPACT

is the most scientifically validated and commonly used comput-

erized neurocognitive evaluation system.15 It determines a total

symptom score by using a 7-point Likert scale over 22 different

categories and measures cognitive per-

formance against normative data gath-

ered on �17,000 athletes who partici-

pated in baseline testing as part of their

pre-sport participation. The percentile

rank for a subject’s performance is de-

termined by using the normative data

from the control athletes of the same age

group.16 After the initial neurocognitive

testing, serial postconcussion symptom

scores were obtained to determine the

time to recovery, which was defined as

the score being zero or the patient stat-

ing that he or she was asymptomatic.

Age and sex were recorded. Data col-

lected included type of trauma, dates of

injury and clinical evaluation, neuro-

cognitive results, history of prior concussions, imaging results,

clinical management, and any edema of the suboccipital muscu-

lature on T2 imaging. A prior concussion was defined as a diag-

nosis of concussion by an athletic trainer, neuropsychologist, or

other medical personnel at any facility; however, documentation

of that diagnosis had to be placed in the medical record. Recovery

time was defined as when the patient stated that he or she was asymp-

tomatic or the neurocognitive Total Symptom Score was zero.

MR imaging examinations were performed within 3 days of

clinical examination on a 1.5T system (Signa; GE Healthcare, Mil-

waukee, Wisconsin) with a standard head coil and included axial

images through C2. During the study period, all patients included

in this study underwent the identical postconcussion imaging

protocol on the same magnet system as follows: sequences in-

cluded sagittal and axial T1-weighted imaging (TR, 600 ms; TE,

minimum; section thickness, 5 mm; NEX, 1), and T2-weighted

imaging (TR, 2000 –2500 ms; TE, 84 –102 ms; section thickness, 5

mm; NEX, 1). FOV ranged from 200 to 240 mm.

Suboccipital Muscle Cross-Sectional Area Calculations
Neck muscle boundaries were manually outlined along their fas-

cial borders by 2 radiologists on T1-weighted images with an ori-

entation parallel to the foramen magnum with the assistance of a

3D viewer (Vitrea Core; Vital Images, Minnetonka, Minnesota).

The cross-sectional area of the following muscles was evaluated at

the C1 anterior arch: 1) rectus capitis-PMin, and 2) rectus capitis-

PMaj; and the following, at the middens level: 3) longus colli and

longus capitis (traced together), 4) inferior oblique capitis, 5)

semispinalis cervicis and multifidus (traced together), 6) semispi-

nalis capitis, and 7) splenius capitis musculature (Fig). Individual

muscle cross-sectional areas were calculated, and total neck mus-

cle cross-sectional area was determined by summing all of the

individual neck musculature cross-sectional areas. Radiologists

each reviewed 10 sample cases for training purposes. Reproduc-

ibility of muscle cross-sectional area measurements was then as-

sessed on 20 test cases for each muscle group using 2 neuroradi-

ologists, blinded to both the patient’s history and the other

observer’s measurements. The Lin concordance correlation coef-

ficient was used to evaluate agreement17 and was interpreted as

FIG 1. Measurement of cross-sectional areas for the suboccipital muscles. Representative tracing
of the cross-sectional areas on T1-weighted imaging of the rectus capitis posterior minor (1) and
rectus capitis posterior major (2) muscles at the level of the anterior arch of C1 (A) and the longus
colli/capitis (3), inferior oblique capitis (4), semispinalis cervicis/multifidus (5), semispinalis capitis
(6), and splenius capitis (7) muscles at the middens level (B).
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follows18: poor agreement (�0.90), moderate agreement (0.90 to

�0.95), substantial agreement (0.95– 0.99), and almost perfect

agreement (�0.99). Following the 20 test cases, a single neurora-

diologist blinded to the patient’s history made measurements.

Univariate Data Analysis
Comparison of the demographic data was performed with a

Fisher exact test or a 2-tailed t test. Comparison of cross-sectional

area measurements was performed with an unpaired t test. Cor-

relation of the cross-sectional area measurements with clinical

metrics was performed with the Pearson correlation coefficient or

a point-biserial coefficient. Correlation of clinical variables or

muscle cross-sectional areas with recovery time was performed

with a Pearson correlation coefficient or point-biserial coefficient.

P values of � .05 were statistically significant.

Multivariate Data Analysis
Multivariate analysis for variables correlating with recovery time

was performed with an ordinary least-squares model, by using

variables whose P values were �0.10 by univariate analysis. Good-

ness of fit was evaluated with the Hosmer-Lemeshow statistic.

Odds ratios and their 95% confidence intervals were calculated. P

values � .05 were statistically significant.

RESULTS
Patient Selection and Image Acquisition
Sixty-four patients were included (44 males, 20 females). A sum-

mary of the demographic and clinical data is shown in Table 1. No

patients had macroscopic edema of the suboccipital musculature

on T2-weighted imaging on the included FOV.

Suboccipital Muscle Cross-Sectional Area Calculations
Reproducibility of the cross-sectional areas was substantial for all

muscles (Lin correlation coefficients � 0.9517– 0.9891) (Table 2).

The average cross-sectional area measurements for the rectus ca-

pitis-PMin and rectus capitis-PMaj at C1 and the remaining sub-

occipital musculature at C2 are shown in Table 3.

Univariate Data Analysis
The lower cross-sectional area of the rectus capitis-PMin was cor-

related with the following outcome measures: 1) greater symptom

severity (r � 0.596; P � .0001), 2) longer recovery time (r � 0.387;

P � .002), 3) poorer verbal memory performance (r � 0.285;

P � .02), and 4) postconcussive headache (rpb � 0.39; P � .001).

Neither the overall cross-sectional area nor those for any of the

other individual muscles were associated with symptom severity,

recovery time, neurocognitive testing, or headache. Among demo-

graphic factors, age and male sex correlated with recovery time on

univariate analysis (r � 0.423 and �0.318; P � .005 and .01, respec-

tively). Correlation results are summarized in the On-line Table.

Multivariate Analysis
Four variables had P values � .10 by univariate analysis: the rectus

capitis-PMin cross-sectional area, longus coli/capitis cross-sec-

tional area, age, and sex. Multivariate analysis found that the only

statistically significant factor for prognosis was the rectus capitis-

PMin cross-sectional area. A larger rectus capitis-PMin cross-sec-

tional area was protective against a longer recovery time (adjusted

odds ratio, 0.22; P � .03). Summary of the multivariate analysis is

shown in Tables 4 and 5.

Table 1: Clinical and demographic characteristics of patients with
mTBI

No. (%) or Mean (SD)
Age (yr) 17.7 (5.6)
Male sex 44 (69%)
Prior concussion 15 (23%)
Postconcussive headache 29 (45%)
Injury mechanism:

Sports injury 40 (63%)
Motor vehicle collision 5 (8%)

Time to presentation (days) 10.1 (10–50)a

Initial Total Symptom Score 33.7 (24)
Verbal Memory Score (percentile) 32.5 (29)
Visual Memory Score (percentile) 27.1 (28)
Processing Speed Score (percentile) 36.1 (29)
Reaction Speed Score (percentile) 33.5 (29)
Recovery time (wk) 36.6 (11–74)

a Time intervals are presented as median (interquartile range).

Table 2: Lin correlation coefficients for CSA of the muscles of
head movement

Muscle
Lin Correlation

Coefficient 95% CI
Rectus capitis posterior minor 0.9891 0.9737–0.9955
Rectus capitis posterior major 0.9645 0.9137–0.9856
Longus colli/capitis 0.9531 0.8887–0.9806
Inferior oblique capitis 0.9608 0.9070–0.9837
Semispinalis cervicis/multifidus 0.9517 0.8830–0.9804
Semispinalis capitis 0.9797 0.9497–0.9919
Splenius capitis 0.9586 0.9001–0.9831

Note:—CSA indicates cross-sectional area.

Table 3: Average CSAs of the suboccipital musculature
Muscle Mean CSA (cm2) SD

Rectus capitis posterior minor 2.36 1.20
Rectus capitis posterior major 5.12 1.76
Longus colli/capitis 1.19 0.45
Inferior oblique capitis 3.73 0.54
Semispinalis cervicis/multifidus 1.48 0.45
Semispinalis capitis 4.04 0.61
Splenius capitis 4.98 0.82
Total muscle CSA 19.70 6.80

Note:—CSA indicates cross-sectional area.

Table 4: Variables trending towards correlation with recovery
time (P <.10) on univariate analysis

Variable r P
Rectus capitis posterior minor CSA �0.387 .002
Longus colli/capitis CSA 0.218 .08
Age 0.423 .005
Male sex �0.318 .01

Note:—CSA indicates cross-sectional area.

Table 5: Subsequent performance in a multivariate model

Variable
Adjusted Odds
Ratio (95% CI) P Value

Rectus capitis posterior minor CSA 0.22 (0.11–0.43) .03
Longus colli/capitis CSA 1.66 (1.18–2.34) .14
Age 1.15 (1.01–1.31) .27
Male sex 0.78 (0.43–1.37) .65

Note:—CSA indicates cross-sectional area.
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DISCUSSION
In mTBI, a lower cross-sectional area of the rectus capitis-PMin

alone among the suboccipital muscles was associated with greater

symptom severity, longer recovery time, poor neurocognitive test

performance, and postconcussive headache. Overall suboccipital

muscle cross-sectional area did not correlate with clinical metrics

or symptomatology after mTBI.

Suboccipital muscle atrophy has long been associated with

chronic pain.19 Previous studies have shown greater atrophy in

the rectus capitis-PMaj and rectus capitis-PMin among the sub-

occipital muscles in patients with persistent whiplash symp-

toms,20,21 and atrophy of these muscles has been associated with

higher inflammatory biomarkers, hyperalgesia, and worse out-

comes in patients with whiplash.22 However, these studies focus-

ing on the effects of the suboccipital musculature on posttrau-

matic outcomes have focused exclusively on patients with

whiplash-associated neck pain.23 No studies have extended these

findings to patients with mTBI, who may not necessarily have an

associated neck injury but often have an acceleration-deceleration

energy transfer similar to that in whiplash injuries.24

Most interesting, decreased cross-sectional area in the rectus

capitis-PMaj and rectus capitis-PMin musculature has also been

found in patients with chronic tension-type headaches, in which

the lower cross-sectional areas of the rectus capitis-PMaj and

rectus capitis-PMin were associated with greater headache in-

tensity, duration, and frequency.25 Tension-type headaches

are among the most common headaches experienced after

mTBI, with almost 40% of postconcussive headaches reported

as tension headaches.26 However, the role of the rectus capitis-

PMaj and rectus capitis-PMin in mTBI and their association

with posttraumatic headaches have not been investigated, to

our knowledge.

In our study, only the rectus capitis-PMin was associated with

greater symptomatology, poorer outcome, and posttraumatic

headaches after mTBI. Although the rectus capitis-PMaj and rec-

tus capitis-PMin are both head extenders,20 the rectus capitis-

PMin experiences the greatest load in low-energy impacts.27 In

these low-energy injuries, the proportion of energy absorbed by

the suboccipital muscles themselves is decreased relative to the

strain on their tendons and connective tissue connections.27

The rectus capitis-PMin has a unique connective tissue bridge to

the dura mater,28 which has been noted on both anatomic speci-

mens and MR imaging.29-31 This connective tissue bridge is re-

sponsible for resisting dural enfolding during neck extension.

Traumatic injury to this myodural bridge can occur with a weak

or atrophic rectus capitis-PMin. A smaller/weaker rectus capitis-

PMin can absorb less energy, and as a result, higher energy is

deposited in the myodural bridge, increasing the risk of injury.32

Secondary atrophy of the rectus capitis-PMin after trauma can

also cause chronic dysfunction of the myodural bridge29 because

an atrophic rectus capitis-PMin is less able to resist inward folding

of the dura, resulting in abnormal dural movement and tension.33

This outcome can result in prominent referred pain because the

dura itself is highly sensitive to tractional forces.

The dura is innervated by the first 3 cervical nerves, which

converge with the trigeminal nerve in the trigeminal nucleus cau-

dalis. Resulting activation of the nociceptors in the trigeminocer-

vical nucleus by these cervical nerves produces a cervicogenic

headache. It is therefore not surprising that the low cross-sec-

tional area of the rectus capitis-PMin was associated with greater

symptom severity and headaches in our cohort. In fact, cervico-

genic headache from injury to the rectus capitis-PMin– dural con-

nection is a well-known phenomenon in headaches from suboc-

cipital procedures, where injury to the myodural bridge results in

abnormal adhesions between the rectus capitis-PMin and the

dura.34 Lysis of these abnormal rectus capitis-PMin– dural adhe-

sions in these patients has been shown to provide symptom

relief.35

Additional symptomatology associated with rectus capitis-

PMin atrophy could arise from its role as the proprioceptive cen-

ter of the upper cervical spine.36 The rectus capitis-PMin has the

greatest concentration of muscle spindles among the suboccipital

musculature,37 with an especially high concentration of large-

diameter A-� fibers, which convey proprioceptive information.

Transmission of proprioceptive data along these A-� fibers effec-

tively blocks nociceptive signals from muscle C-fibers from reach-

ing the spinal cord and higher order pain centers.36 Atrophy of the

rectus capitis-PMin results in a decrease in A-� fibers, which, in

turn, causes less inhibitory signals and greater pain impulses to

central pain pathways.

Cognitive difficulties are commonly seen in patients with both

acute and chronic pain,38 and pain is one of the most significant

contributors to neurocognitive performance after mTBI.39 Thus,

rectus capitis-PMin atrophy may play a role in both the symptom-

atology and cognitive deficits after mTBI. Together, these findings

may indicate a role for preventive strengthening exercises focused

on the rectus capitis-PMin musculature in individuals at high-risk

for mTBI.

Our study has limitations. Our evaluation was a retrospective,

single-institution study with a moderate sample size. Accordingly,

the findings should be corroborated with a larger prospective

study. Furthermore, our study included both patients who were

thought to warrant imaging clinically and those with prior con-

cussions. Thus, a selection bias may exist toward more seriously

injured patients who present with significant symptoms that war-

rant imaging. Arguably, although a bias exists, it is a bias toward

the patients that would most benefit from imaging biomarkers.

Additionally, only the suboccipital muscles were evaluated in our

study, and further studies evaluating the relationship of the lower

neck muscles to symptoms and outcomes in mTBI would help to

better understand how the biomechanical and physiologic prop-

erties of the neck affect what has often been considered exclusively

brain pathology.

CONCLUSIONS
In mild TBI, the rectus capitis-PMin is the only suboccipital mus-

cle whose cross-sectional area is correlated with symptom severity

and worse outcome. This may reflect greater strain on the myo-

dural bridge in patients with a smaller rectus capitis-PMin or

perhaps decreased inhibition of nociceptive pathways from rectus

capitis-PMin spindle atrophy. Understanding how suboccipital

muscle loss influences the pathophysiology of mTBI may help

develop physical therapy rehabilitation programs to improve out-

comes in this population.
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