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REVIEW ARTICLE
ADULT BRAIN

Artificial Intelligence in the Management of Intracranial
Aneurysms: Current Status and Future Perspectives

Z. Shi, B. Hu, U.J. Schoepf, R.H. Savage, D.M. Dargis, C.W. Pan, X.L. Li, Q.Q. Ni, G.M. Lu, and L.J. Zhang

ABSTRACT

SUMMARY: Intracranial aneurysms with subarachnoid hemorrhage lead to high morbidity and mortality. It is of critical importance to
detect aneurysms, identify risk factors of rupture, and predict treatment response of aneurysms to guide clinical interventions. Artificial
intelligence has received worldwide attention for its impressive performance in image-based tasks. Artificial intelligence serves as an adjunct
to physicians in a series of clinical settings, which substantially improves diagnostic accuracy while reducing physicians’ workload. Computer-
assisted diagnosis systems of aneurysms based on MRA and CTA using deep learning have been evaluated, and excellent performances
have been reported. Artificial intelligence has also been used in automated morphologic calculation, rupture risk stratification, and outcomes
prediction with the implementation of machine learning methods, which have exhibited incremental value. This review summarizes current
advances of artificial intelligence in the management of aneurysms, including detection and prediction. The challenges and future directions
of clinical implementations of artificial intelligence are briefly discussed.

ABBREVIATIONS: AI ¼ artificial intelligence; AUC ¼ area under the curve; CAD ¼ computer-assisted diagnostics; DL ¼ deep learning; FP ¼ false-positive;
ML ¼ machine learning; SVM ¼ support vector machines

Unruptured intracranial aneurysm remains a major public
health concern affecting about 3%–7% of the general popu-

lation.1,2 CTA and MRA are the preferred techniques to identify
aneurysms. A steadily increasing number of radiologic examina-
tions are performed for neurologic diagnoses, which require
human expertise in image interpretation. However, experienced
radiologists are in a relative shortage due to an ever-increasing
demand for imaging studies.3 The excess workload imposed on
physicians requires them to interpret 1 image every 3–4 seconds
within work hours. As a result, uncertainty and inevitable errors
when making diagnoses and decisions may arise.4

As the most common cause of nontraumatic SAH, aneur-
ysms are responsible for 85% of SAH cases. The overall an-
nual rupture risk is 0.95% and is associated with a high risk
of morbidity and mortality.5 Endovascular and surgical
treatments have a 3%–10% risk of stroke or death and may
not permanently eliminate the propensity for rupture.6

Therefore, recognition of risk factors and construction of
prediction models related to aneurysm initiation, growth,
rupture, and assessment of intervention have been popular
areas of investigation. However, the management of aneur-
ysms is associated with multiple challenges in all aspects of
clinical practice, which cannot be overcome easily by con-
ventional methodology.

Artificial intelligence (AI) describes the development of
computer algorithms that simulate human intelligence, which
includes learning, reasoning, and self-correction. Brilliant
progress has been made that allows machines to automati-
cally interpret complicated data as part of routine clinical
care.7 AI is also expected to satisfy the clinician’s need for
higher accuracy and better efficacy at all stages of aneurysm
management. This review summarizes current applications of
AI in the various phases (Fig 1) of intracranial aneurysm
management, which facilitates optimized workflows and adds
benefit to patient care. In addition, this review discusses the
future challenges and directions of AI-based management of
aneurysm.
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Brief Overview of AI
AI can perform tasks with humanlike intelligence such as pattern
recognition, object identification, and problem resolution. AI can
make autonomous decisions based on the data collected for train-
ing. Similarly, in the realm of medicine, AI can identify a likely
diagnosis and select a suitable treatment based on health records
or imaging information without any explicit programming.
Machine learning (ML) endows AI with the ability to learn and
train models to extract and memorize features and related param-
eters. There are 3 types of ML: supervised (training with specific
labels or annotations), unsupervised (training without specific
labels and the algorithm clusters data to reveal underlying pat-
terns), and semi- or weakly supervised learning (training with both
labeled and unlabeled data to reduce the annotation burden).8

Deep learning (DL) is a subset of machine learning that is
end-to-end ML in which it receives input and learns its salient
features without explicit examples.9 There are 2 key requirements
for ML: 1) Data are relevant and detailed enough for answering
the clinical questions; and 2) a computational ML technique is
appropriate for the type, amount, and complexity of the available
data. Finally, it is necessary to further validate the usefulness of
MLmodels in real-world practice.10

Traditional ML algorithms predefine engineered features that
can describe the patterns inherent in regions of interest with
explicit parameters based on expert knowledge. Support vector
machines (SVM) and random forests are classic ML techniques.

These algorithms have been successfully used in AI studies.11,12

Compared with traditional ML algorithms, DL uses an artificial
neural network that extracts features from images automatically
to create its own filters, called feature maps (independent of
human input) and memorizes visual patterns with highest fre-
quency. There are convolution layers, pooling layers, fully con-
nected layers, and normalization layers; the pooling reduces the
number of parameters and reduces overfitting. Once a final
output is made that is compared with ground truth, the model
will reweight the inputs until the best performance is reached,
which can be repeated many times (called epochs). For fea-
ture-extraction and selection, DL algorithms do not need to
predefine features, and the feature representations can be directly
learned by navigating the data space. Most DL networks funda-
mentally build on some basic and similar neural network blocks or
layers based on DL attempts to model high-level abstractions.13

Therefore, the extracted complex features are then fed through the
last layer of the network for the target, such as classification or pre-
diction. Convolutional neural networks are typical types of DL
architecture, which consist of characteristic layers of convolutional
operations on the input images to extract abstract features.13

Computer-Assisted Diagnosis of Aneurysms
CTA and TOF-MRA are widely available techniques for detection.
However, very small aneurysms are often missed.14 Computer-
assisted diagnostics (CAD) acts principally as an internal second

FIG 1. Various phases of intracranial aneurysm management. They include the procedures of detection and prediction.
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opinion and improves reading accuracy of physicians.15,16

Algorithms have been devised for automatic detections based on
MRA/CTA studies using conventional-style and DL methods
(On-line Table).

Conventional-Style CAD Systems. The conventional-style CAD
systems were based on presupplied characteristics or imaging fea-
tures, such as vessel curvature, thresholding, or a region-growing
algorithm.17 The first CAD system geared toward aneurysms
reported in the literature was developed by Arimura et al,18 in
2004, which consisted of multiple gray-level thresholding techni-
ques. It showed 100% sensitivity with 2.4 false-positives (FPs) per
patient based on a leave-one-out-by-patient test method. In
subsequent validation studies, Hirai et al19 and Kakeda et al20

found that the sensitivity was 100% and 84%, respectively.
However, this algorithm was not fully automated, nor could
it detect small or fusiform type of aneurysms. In addition, the
aneurysms in these studies were not verified by DSA as an
outside reference standard. By using DSA as the reference,
Yang et al17 developed a more automated CAD algorithm by
combining 2 complementary techniques: 1) automatic intra-
cranial artery segmentation and 2) detection of points of in-
terest from the segmented vessels. They achieved a sensitivity
of 95% with up to 9 additional FP detection marks. However,
the sensitivity was lower for small aneurysms (,5mm). The
conventional-style CAD schemes relied on a similar rules-
based approach in which prior domain knowledge was incor-
porated into hand-crafted features before using ML techni-
ques as a classifier. The major limitation is that many false-
positive results are found in bending or branching portions
of vessels. Multiple methods have been proposed such as an
ellipsoid convex enhancement filter to selectively enhance
aneurysms while reducing FPs, but the number of FPs
remains high.21

Deep Learning CAD Systems. More recently, DL-based CAD
systems have been developed for aneurysm detection on the ba-
sis of MRA.22-24 For example, Nakao et al22 used a 2D convolu-
tional neural network to detect aneurysms and reported a
sensitivity of .90% in a single-center study. Similarly, an open-
source neural network has also been applied by using 2D MIPs
or original image data.23,24 However, generalization of these
studies requires further validation. The work by Ueda et al25

subsequently improved the sophistication of a DL methodology
with a sensitivity of 91% and 93% for the internal and external
test datasets, respectively. The external dataset contained images
from 4 separate institutions under different environments and MR
imaging unit manufacturers, configurations, and field strengths;
this feature highlights the rigor and general applicability of the
model. However, the study did not have any cases negative for
aneurysms. Furthermore, only 74 aneurysms and studies exclu-
sively acquired on Siemens imaging systems were integrated in the
external test dataset. Additionally, a high rate of FPs may poten-
tially reduce the enthusiasm of radiologists for the use of this sys-
tem if distinguishing true-positive aneurysms from FPs becomes
too menial.

CTA images have been studied by combining a neural net-
work segmentation model (the HeadXNet model) to augment
diagnostic performance in the detection of aneurysms.26 In this
study, the clinicians showed significant increases in sensitivity,
accuracy, and interrater agreement when they were augmented
with the model. However, the lack of a reference standard and
external data verification, as well as the focus only on nonrup-
tured aneurysms of .3mm, limited the generalization and fur-
ther application of the model.

With respect to the detection of aneurysms, there is a general
notion that CAD algorithms have the potential to shorten read-
ing times and increase radiologists’ performances in the labora-
tory and clinical environment.27 Additionally, an AI program of
aneurysms may benefit patients who undergo CTA as part of an
acute ischemic stroke work-up because it may decrease the like-
lihood of an incidental aneurysm being undetected. However,
to our knowledge, most studies presented so far lack an external
reference standard for validation, such as DSA, so further stud-
ies are warranted.

AI in the Prediction of Intracranial Aneurysm Rupture Risk
Automated Morphologic Analysis. Identifying the high-risk mor-
phologic features of saccular aneurysms is very important for
rupture-risk stratification and treatment decision. Aneurysm size
and shape are regarded as the most important criteria.5 In clinical
practice, the size is routinely measured manually by physicians on
2D/3D projections. However, manual measurements have inherent
limitations of subjectivity and inconsistency, which cause intra- and
interobserver variations28 and cannot capture the complex geomet-
ric features of aneurysms.29 Researchers have introduced several
computerized procedures to make morphology assessment more
objective and consistent.30-32 The detection of the neck plane is the
key point for multiple subsequent operations. Larrabide et al30 deter-
ministically identified the aneurysm neck based on the topology
analysis of the vasculature skeleton and the concepts of deformable
cylinders. They can automatically isolate the sac of an aneurysm,
reduce interobserver variability, and avoid the bias between the
observers. Automatically derived geometric indices were often large,
irrespective of segmentation method or operators.31

For rapid assessment in the clinical setting, Xiang et al32 devised
an image-based vascular analysis toolkit named AView (https://
www.eng.buffalo.edu/Research/Hemo/AView.html) to perform
automatic computation of morphologic parameters. AView pro-
vided a relatively accurate measurement with an average size error
of 0.56% and volume error of 2.1% morphologically.33 This toolkit
also enabled increased consistency in morphologic measurement
among operators by 62% in size and 82% in neck diameter meas-
urements, which could help potentially avoid inappropriate clinical
decisions. In the real-world scenario, Rajabzadeh-Oghaz et al,34

from the same group, tested the algorithm on 39 aneurysms and
found that the computer-assisted 3D approach can lead to a more
accurate and consistent determination of aneurysm size and neck
diameter. Besides, DL methods such as the convolutional neural
network model developed by Stember et al23 can also be used to
automatically analyze morphologic indices. However, there is
much work to be done before routine clinical application of these
technologies is realized.
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Automated Calculation of Hemodynamics. Hemodynamics is
currently deemed as an important factor for aneurysm formation
and rupture risk.35 Modern imaging modalities are adequate for
the application of computational fluid dynamics modeling.
However, complex procedures are time-consuming and demand
substantial human interaction, resulting in limited application in
real-time clinical practice, which requires automated tools to exe-
cute analysis. Seo et al36 developed a highly automated method to
execute a computational process with direct use of a voxelized
contrast information from 3D angiograms to construct a level-
set-based computational “mask” for a hemodynamic simulation.
By testing the method in 7 patient-specific cases against the
results of manual evaluation by an experienced neurosur-
geon, they found that their proposed algorithm was capable
of identifying the lesion and connected vessels for various
types of aneurysms. The simulation results presented by the
algorithm, which include the values and distribution of wall
shear stress, were in line with previous computational stud-
ies.37 However, this study was only hypothesis-generating
and requires further refinement and validation. Considering
that hemodynamic parameters are critical for the develop-
ment and rupture risk, such approaches bode rather well for
clinical utility due to their automation and diminishing need
for human interaction.

AI-Based Prediction of Rupture Risk. An increasing number of
unruptured aneurysms are detected with the growing use of
advanced imaging techniques. However, we are now confronted
with the dilemma of making clinical decisions regarding treat-
ment of unruptured aneurysms, because the risk of treatment-
related fatality is relatively high, while the rupture risk is low.5,6

Predicting rupture risk of aneurysms is challenging and ML is
expected to mitigate this problem. Liu et al38 adopted 17 parame-
ters as inputs to a 2-layer feed-forward artificial neural network
aimed at predicting the rupture status of anterior communicating
artery aneurysms and found an excellent performance. However,
this study included only 1 single-center population and used an
imbalanced number of samples between ruptured (n=540) and
unruptured aneurysms (n= 54). The instability of aneurysms is
considered a rupture risk. With this knowledge, Liu et al39

applied radiomics tools to extract morphologic features to predict
stability and found that flatness was the most important parame-
ter; the area under the curve (AUC) in the testing set reached
0.729 when only flatness was used to predict aneurysm stability,
implying the usefulness of radiomics-derived morphologic fea-
tures for aneurysm rupture risk.

With the introduction of ML methods, it is interesting to
understand the distinctive performances of different ML sta-
tistical learning approaches. Detmer et al40 and Silva et al41

worked at predicting aneurysm rupture status. They trained
several ML methods, including SVM and random forests clas-
sifiers. Detmer et al found that multilayer perceptron had the
best performance with an AUC of 0.826 (95% CI, 0.768,
0.883) in the test set; important variables included aneurysm
location, mean surface curvature, and maximum flow veloc-
ity. Silva et al found random forests to have the best perform-
ance. In their work, aneurysm location and size were the 2

features that contributed most significantly to the efficacy of
the model. This difference may contribute to the uniqueness
of input variants and candidate ML methods.

AI in the Prediction of Aneurysm Complications
Prediction of Complications of SAH. Delayed cerebral ischemia,
vasospasm, and cerebral infarction are among the complications
of aneurysm rupture; several studies have explored the applica-
tions of ML methods to predict at least one of them. Dumont et
al42 developed a proof-of-concept artificial neural network pre-
diction model of symptomatic cerebral vasospasm and found the
artificial neural network–based model had a better predictive
value (AUC of 0.960) than 2 multiple logistic regression models
(AUC ¼ 0.933 and 0.897) developed by Adams et al43 and
Qureshi et al,44 respectively. Further validation provided an excel-
lent performance in a markedly distinct geographic population
setting of southern Arizona with a prospective use of the artificial
neural network predictive model.45 However, the artificial neural
network did not incorporate the timing of symptomatic cerebral
vasospasm onset and was not validated in a larger-scale popula-
tion. Another study had similar findings: ML methods (SVM,
random forests, and multilayer perceptron) have a higher per-
formance than logistic regression models in the prediction of
delayed cerebral ischemia.46

Multiple-task AI has also been studied. Tanioka et al47 used
random forests to construct early prediction models of delayed
cerebral ischemia, angiographic vasospasm, and cerebral infarc-
tion development with clinical variables and matricellular pro-
teins at post-onset days 1–3. Three such proteins have been
reported to be relevant to delayed cerebral ischemia: osteopontin,
periostin, and galectin-3. The prediction accuracies of the 3 con-
ditions were 95.1%, 78.1%, and 83.8%, respectively. The random
forest models found that osteopontin and galectin-3 were among
the top 3 most important variables. These novel studies in the
assessment of complications of aneurysms have demonstrated
excellent performances using MLmethods.

Another interesting application is the use of clinical data and
CT perfusion from hospital admissions48 to predict outcomes of
aneurysmal SAH. A random forest model was trained to pre-
dict dichotomized mRS (#2 and.2), and the accuracy was
84.4% in the training folds and 70.9% in the validation folds.
However, this study had a small population size and therefore
cannot be introduced into clinical practice to practically ben-
efit those who have SAH.

Prediction of Treatment Outcomes. Besides aneurysmal SAH,
the outcomes of aneurysm treatment have also been explored by
ML. For example, the flow diverter has emerged in recent years as
one of the endovascular treatments of aneurysms and is particularly
suitable for treating wide-neck and intractable aneurysms with un-
usual morphologies. However, 25% of treated patients are at high
risk for thromboembolism formation and aneurysm rerupture.49

Paliwal et al11 compared 4 supervised ML algorithms (logistic
regression, SVM, K-nearest neighbor, and neural networks) to pre-
dict 6-month outcomes of flow diverter–treated aneurysms and
found that neural network (AUC ¼ 0.967) performed the best dur-
ing training; G-SVM (Gaussian-SVM) and neural network had 90%
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prediction accuracies in the testing cohort. Although a major con-
cern is the absence of an external validation, it is imperative to de-
velop models that help clinicians choose flow-diverter placement
in the appropriate patients.

Limitations and Challenges of AI on Aneurysms
Many investigators have endeavored to develop more intelligent
and automated methods to improve the process and streamline
the management of aneurysms in clinical practice. Complete
management of aneurysms includes detection, rupture risk,

complications prediction, treatment
strategies selection, and risk of recur-
rence evaluation. AI has been involved
in almost all consecutive steps; how-
ever, the results are not entirely satis-
factory and have some limitations and
challenges. First, a systematic review
showed no better performance of ML
compared with traditional logistic
regression in predicting adverse clini-
cal outcomes.50 Model validation pro-
cedures are often not conducted or
well-interpreted; thus, a fair compari-
son in the domain of real-world case
studies is still urgently needed. Second,
even though DL methods showed
promising potential, there remains
considerable debate about the time
required to train DL.51 Cost-effective-
ness assessment of the high expense of
imaging data storage and use of
graphics processing units should also

be considered. In addition, stakeholders may be responsible for
undertaking cost-effectiveness analyses to determine the impact
on health care economics, which requires large-scale feasibility
studies to evaluate whether unintended consequences may be
incurred following the widespread implementation of AI meth-
ods.52,53 Third, current datasets used for training and validation
in aneurysm studies are often small, frequently from only 1 insti-
tution, and usually lack external validation within different popu-
lations, imaging devices, platforms, and institutions, resulting in
algorithm overfitting.

FIG 2. The starting point is high quality data—imaging findings are best contextualized with patients, medical records, and “big data.”
Computational methods may be supervised, unsupervised, or combined. Imaging applications include quantification, notification tools, and diag-
nostic and risk predictions. Adapted with permission from Dey et al10 with partial revisions.

FIG 3. An ideal auto system for intelligent management of intracranial aneurysms. This auto AI
system includes the episodes of aneurysm ranging from the detection of SAH and aneurysms to
the automatic computation of hemodynamics, dimension index, and clinical decision system.
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Future Perspectives of AI in Intracranial Aneurysms
AI should have a great potential in the management of aneurysms
in the future. Potential imaging-based AI applications (Fig 2)
mainly contain 4 aspects: quantification, notification tools, diag-
nostics, and risk prediction for therapy.8 For aneurysm manage-
ment, there are various opportunities for AI, including the
following: 1) an automated and reliable prescreening triage sys-
tem to allow radiologists and emergency physicians to shift their
focus to patients at higher risk for adverse events; 2) automated
detection and intelligent outcome prediction; 3) subsequent pre-
diction of treatment strategies such as clipping, embolization, or
follow-up; and 4) automated and intelligent detection of de novo
aneurysm formation or recurrence after treatment and the pre-
diction of rerupture risk.

Researchers should intensify their efforts toward the develop-
ment of advanced DL algorithms to resolve complex problems,
such as extracting information on inflammation of vessel walls
from high-resolution vessel wall MR imaging, which has been a
nascent area of research in recent years. Additionally, AI tools
that can perform multiple tasks, instead of those directed at an
isolated problem, are in need. Examples include algorithms that
can automatically detect and classify the whole variety of cerebro-
vascular diseases, including multiple entities like aneurysms,
AVMs, andMoyamoya disease. Advanced network structures such
as convolutional residual networks, active learning, one-shot learn-
ing, and generative adversarial networks may help settle these
issues.54 These areas are newly emerging and require further
investigation.

In our perspective, a successful AI tool for aneurysms is expected
to be an integrated toolkit that can intelligently and simultaneously
navigate multiple tasks, ranging from detection to prediction (Fig 3).
In future work, comprehensive multimodality imaging is worth
investigating and is expected to learn and exploit feature representa-
tion of images more effectively. In addition, human-in-the-loop AI
solutions are quickly emerging concepts toward clinical implemen-
tation, which can improve the expert-model performance and act as
a gatekeeper for clinical decisions.

Most recently published AI studies have not delineated robust
validations of clinical performance and generalizability, including
in the area of intracranial aneurysms. Kim et al55 recommended 4
criteria for validating the clinical performance of AI algorithms
in real-world practice; 1) the external validation must be
obtained; 2) using a diagnostic cohort study; 3) arise from multi-
ple institutions; and 4) be performed in a prospective manner. A
successful AI tool for aneurysm management must be com-
pletely reliable in distinguishing true-positive cases with high
confidence, which requires an exceedingly high number of
annotated imaging studies, before we can expect widespread
implementation in real-world practice.

CONCLUSIONS
Recent evidence shows that AI, especially deep learning, is
rapidly becoming a promising aid in the management of an-
eurysm. AI is capable of detecting and evaluating rupture
risk, triaging clinical therapy strategies, and predicting treat-
ment outcomes. Although we have not quite yet reached the
threshold needed for routine clinical application, we believe

that AI is capable of solving these issues in a patient-centric
manner but will require advancing network structures and
more sophisticated validation processes.
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