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ORIGINAL RESEARCH
ADULT BRAIN

Assessing the Equivalence of Brain-Derived Measures from
Two 3D T1-Weighted Acquisitions: One Covering the Brain

and One Covering the Brain and Spinal Cord
D. Pareto, J.F. Corral, A. Garcia-Vidal, M. Alberich, C. Auger, J. Rio, N. Mongay, J. Sastre-Garriga, and À. Rovira

ABSTRACT

BACKGROUND AND PURPOSE: In MS, it is common to acquire brain and spinal cord MR imaging sequences separately to assess
the extent of the disease. The goal of this study was to see how replacing the traditional brain T1-weighted images (brain-T1) with
an acquisition that included both the brain and the cervical spinal cord (cns-T1) affected brain- and spinal cord–derived measures.

MATERIALS AND METHODS: Thirty-six healthy controls (HC) and 42 patients with MS were included. Of those, 18 HC and 35
patients with MS had baseline and follow-up at 1 year acquired on a 3T magnet. Two 3D T1-weighted images (brain-T1 and cns-T1)
were acquired at each time point. Regional cortical thickness and volumes were determined with FastSurfer, and the percentage
brain volume change per year was obtained with SIENA. The spinal cord area was estimated with the Spinal Cord Toolbox.
Intraclass correlation coefficients (ICC) were calculated to check for consistency of measures obtained from brain-T1 and cns-T1.

RESULTS: Cortical thickness measures showed an ICC .0.75 in 94% of regions in healthy controls and 80% in patients with MS.
Estimated regional volumes had an ICC .0.88, and the percentage brain volume change had an ICC .0.79 for both groups. The
spinal cord area measures had an ICC of 0.68 in healthy controls and 0.92 in patients with MS.

CONCLUSIONS: Brain measurements obtained from 3D cns-T1 are highly equivalent to those obtained from a brain-T1, suggesting
that it could be feasible to replace the brain-T1 with cns-T1.

ABBREVIATIONS: cns ¼ central nervous system; EDSS ¼ Expanded Disability Status Scale; HC ¼ healthy control; ICC ¼ intraclass correlation coefficient;
PBVC ¼ percentage brain volume change; SCA ¼ spinal cord area; SSIM ¼ structural similarity index

The pathologic characterization of MS includes focal and dif-
fuse areas of inflammation, demyelination, neuroaxonal loss,

and gliosis in the central nervous system (cns). Lesions in the
brain and spinal cord are identified with MR imaging, an essen-
tial and fundamental technique in the diagnosis, prediction of
disease progression, and monitoring and prediction of the
response to disease-modifying treatments.1 Actually, brain corti-
cal lesions can be identified from routinely acquired T1-weighted

MR imaging in conjunction with FLAIR imaging.2 Lesions in the
spinal cord can be outlined with just T1-weighted MR imaging.3

Regarding lesion topography and atrophy quantification, both
the brain and spinal cord are assessed separately, requiring the ac-
quisition of 2 images,4 although recent studies have highlighted
the relevance of acquiring simultaneous brain and spinal cord
MR imaging.5,6 Several attempts have been made to assess the
estimation of spinal cord area (SCA) from brain acquisitions,
instead of from spinal cord MR imaging, showing that the esti-
mated SCA values differ.7,8 Despite SCAs differing, estimation
from brain acquisitions is quite common and has been proposed
as an alternative in cases in which spinal cord MR imaging has
not been acquired, which is a common situation due to the lim-
ited availability of the MR imaging scanner. In this context, we
propose a study to investigate whether conventional brain T1-
weighted MR imaging (brain-T1) can be replaced by an acquisi-
tion that encompasses both the brain and the spinal cord (cns-
T1). The proposed cns-T1 is a trade-off between having a larger
spinal coverage compared with a brain-T1 acquisition, allowing
visualization of the presence of lesions, though it is not as com-
plete as conventional spinal cord MR imaging, which covers
down to the conus medullaris. The effect on different brain-
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derived measures such as cortical thickness, regional volumetry,
and changes in the brain volume during a 1-year period has been
assessed. The differences in the estimated SCA have also been
evaluated.

MATERIALS AND METHODS
Cohort
A group of 36 healthy controls (HCs) and 42 patients with MS
was included in the study, with baseline MR imaging. From
those, 18 HCs and 35 patients with MS had 12-month follow-up
MR imaging. The study was approved by the Vall d’Hebron
University Hospital ethics committee, and the participating sub-
jects signed their informed consent (PR(AMI)24/2019).

MR Imaging Acquisition
Images were acquired in a 3T system (Tim Trio; Siemens) with a
12-channel whole-body coil. Acquisition parameters for the 3D
T1-weighted images were the following—for brain—T1: TR ¼
2300ms, TE ¼ 2.98ms, TI ¼ 900ms, 176 slices, FOV ¼ 256mm,
voxel ¼ 1 � 1 � 1 mm3, bandwidth ¼ 240Hz/px, time ¼ 5
minutes 12 seconds; for cns-T1: TR ¼ 2000ms, TE ¼ 3.21ms,
TI ¼ 100ms, 192 slices, FOV ¼ 320 mm, voxel ¼ 1 � 1 � 1
mm3, bandwidth ¼ 150Hz/px, time ¼ 4 minutes 52 seconds.
The parameters for the brain-plus-spine 3D T1-weighted MR
imaging were established according to the protocol suggested by
Cohen-Adad et al9 and include at least the C7 level. The patient
table was moved between the 2 acquisitions so that the center of
the image was placed in the isocenter.

MR Image Analysis
Correction for image distortions due to gradient nonlinearity was
performed with the Siemens implemented tools on the MR imag-
ing console. The two 3D T1-weighted images were cropped using
the robust_fov utility in FSL and bias-field-corrected through the
N4 algorithm. The aim of this step was to remove the medulla
oblongata, which may affect the performance of brain analysis
toolboxes. Then, the brain was segmented with FastSurfer
(https://deep-mi.org/research/fastsurfer/).10 Cortical thickness
was determined in 62 regions, 31 per hemisphere,11 and global
volumes (GM, WM, thalamus, and total intracranial) were also
obtained. The thalamus was chosen because it is a structure
highly involved in all MS phenotypes with the presence of clini-
cally relevant volume loss.12 For those subjects with baseline and
follow-up MR imaging, the percentage brain volume change
(PBVC) was calculated with the SIENA toolbox (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/SIENA).13

To ensure that the quality of the baseline and follow-up
images was equivalent, we calculated the structural similarity
index (SSIM)14 between them. This task can be accomplished by
running SIENA with the -d option, which does not delete the
baseline and follow-up images coregistered to the halfway point
of both studies (which were used to calculate the PBVC). The
SSIM is based on the product of 3 terms that account for the con-
tribution of the luminance, contrast, and structure, and it was
computed as implemented in Matlab (MathWorks). Finally, the
SCA was estimated with the Spinal Cord Toolbox15 (https://
github.com/spinalcordtoolbox/spinalcordtoolbox) by manually

labeling the C2-C3 intervertebral level in the 2 acquisitions.
Briefly, the spine was segmented with the DeepSeg algorithm and
normalized to the multimodal PAM50 atlas to delineate the SCA.
The SCA was calculated as the average of 11 sections, centered at
the C2-C3 level. The position of the C2-C3 level was defined
manually.

Statistical Analysis
The agreement between the measures obtained from the brain-

T1 and cns-T1 was obtained by calculating the intraclass correla-

tion coefficient (ICC). Reproducibility of the cortical thickness,

regional brain volumes, and the SCA was assessed by calculating

the ICC between the baseline and follow-up measures in the HC

group. The Cicchetti criteria16 were taken as a reference: excellent

agreement for 0.75,ICC,1; good, 0.60,ICC,0.74; fair,

0.40,ICC,0.59, and poor when ICC, 0.4.
For the PBVC, mean cortical thickness, and the SCA, a Bland-

Altman plot was used to visualize the agreement between the

measures obtained with the 2 sequences for baseline acquisitions.

The SSIM values obtained from brain-T1 were compared with

those obtained from cns-T1, calculated between baseline and fol-

low-up studies using a paired samples t test. The metrics derived

(ICC, SSIM) were assessed separately for the 2 groups, HC and

patients with MS. Differences in the SCA, GM, andWM fractions

between HCs and patients with MS were assessed using a univari-

ate ANOVA with age and sex as covariates and were considered

significant at P, .05. A power analysis was also performed to

assess the sample size needed for the SCA and GM andWM frac-

tions with each sequence (a ¼ .05, power¼ 0.90). Finally, among

the group of patients with MS, the association between the SCA

and the Expanded Disability Status Scale (EDSS) was assessed

through a nonparametric test (Spearman rank correlation).

Statistical analysis was performed with the Statistical Package for

Social Sciences (SPSS; IBM).

RESULTS
Included patients with MS were mainly classified as having pro-

gressive MS (64% secondary-progressive, median EDSS ¼ 5.0;

range, 3–8.5; 12% primary-progressive, median EDSS ¼ 3.5;

range, 3–5.5), while only 24% had a recent diagnosis of relapsing-

remitting MS (,1 year, median EDSS ¼ 2.0; range, 1–3). A total

of 11 cns-T1 acquisitions were discarded due to movement (8 in

HCs, 3 in patients with MS). The segmentation of the SCA from

the brain-T1 was not accurate in 5 HC. A representative section

of the two 3D T1-weighted sequences can be seen in Fig 1. The

acquisition time of the cns-T1 was in the same range as the acqui-

sition time needed for the brain-T1, around 5minutes. A stand-

ard clinical routine sagittal T1-weighted imaging of the spinal

cord lasts around 4minutes. Thus, acquiring the cns-T1 instead

of the brain-T1 does not result in any additional acquisition time,

and it saves the time needed for an additional spinal cord T1-

weighted MR imaging (4minutes). When cortical thickness

measures were compared, 94% of the regions had excellent agree-

ment in HCs and 80% in patients with MS (Online Supplemental

Data). The regions that showed an ICC, 0.75 are represented in
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Fig 2. Some of the regions that showed the largest disagreement

were common for both groups, like the entorhinal, lateral orbito-

frontal, and pericalcarine cortices.
Regarding the agreement in the volumetric measurements, it

was excellent for GM, WM, thalamus, and total intracranial vol-

ume (Online Supplemental Data). The agreement between the

PBVCs obtained from the 2 sequences was fair for the HC group

and excellent for the MS group (Fig 3, Online Supplemental

Data). The SSIM was significantly higher when comparing

images acquired with the cns-T1 and the brain-T1 (Online

Supplemental Data) for both HCs (t ¼ –8.52; P, .001) and

patients with MS (t ¼ –8.33; P, .001). The Bland-Altman plot

indicated that the mean value of the differences was very close to

zero (0.14). Finally, the agreement in the SCA measures was good

for HCs and excellent for patients with MS (Fig 3, Online

Supplemental Data). When we compared the SCA, GM, WM,

and thalamus fractions between HCs and patients with MS, they

were significantly smaller in patients with MS (P, .003 for all

comparisons). The power analysis indicated that the sample size

needed was higher for cns-T1 when comparing brain-derived

measures (GM fraction, 12 subjects per group for brain-T1 versus

14 for cns-T1; WM fraction, 7 versus 12 subjects per group),

while it was lower for the SCA (69 subjects per group for brain-

T1 versus 27 for cns-T1). The association between the SCA and

the EDSS was significant and slightly weaker when assessed from

cns-T1 measures (r ¼ –0.320; P ¼ .044) than from brain-T1

(r ¼ –0.368; P¼ .019).

DISCUSSION
This study assessed whether measures derived from cns-T1 were
equivalent to those obtained from a brain-T1. The agreement and
reproducibility have been studied for cortical thickness, regional
and total intracranial volumes, PBVC between the baseline and
follow-up scans, and SCA. To our knowledge, this is the first
study that addresses a numeric comparison. Recent studies have
compared these 2 acquisitions in voxel-based studies through a
Statistical Parametric Mapping (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12) approach.5,6

The agreement in the thickness measured in most of the corti-
cal regions was very high, suggesting that the values obtained
from brain-T1 were very close to the ones obtained with cns-T1.
This result was not the case for a few regions along the midline in
the frontal and occipital lobes. The low agreement in the frontal
regions can be explained because this area is more commonly
affected by image artifacts due to the presence of the eyes, air-
filled cavities, and the optic nerve, which may induce changes in
susceptibility. Regarding the low agreement in the occipital lobe,
the pericalcarine area is the region with the thinnest cortex;
hence, small errors in segmentation may have a larger effect in
the measured thickness. In general, it seems that the thickness
measured in frontal regions is thinner when derived from brain-
T1 compared with cns-T1, while the opposite seems to be true in
some regions of the occipital and the temporal cortices. One
could argue that because the position of the center of the brain
relative to the isocenter was not the same in the 2 acquisitions,
the differences may be higher along the dorsal-ventral axis, but
this does not seem to be the case here. The additional regions that
showed a noticeable disagreement in patients with MS were
located adjacent to the area of the eye as well as surrounding the
quadrigeminal cistern along the central fissure. A possible expla-
nation might be that the enlargement of the CSF compartment,
which includes the quadrigeminal cistern, due to the brain atro-
phy affects image segmentation and could be a plausible expla-
nation in MS. Another plausible explanation is susceptibility
skull base bone artifacts, which may depend on the position
regarding the isocenter.

The agreement on the global volumetric measures was very
high, supporting again brain-T1 acquisitions being replaced by
cns-T1. As expected, patients with MS had lower volume frac-
tions. Actually, the sample size needed to perform a study com-
paring GM and WM fractions was larger when using measures
derived from cns-T1 compared with brain-T1, though the differ-
ences were not that large.

Regarding the agreement on the estimated PBVC, it was,
unexpectedly, very high for the group of patients with MS and
low for HCs. One plausible reason could be that the expected
PBVC in HCs is very low, and small differences in the values may
have a larger effect on the calculated ICC. Another explanation
could be that the sample size of the HCs was smaller compared
with that in patients with MS, and the possible outliers may have
a larger impact on the calculated ICCs. Regarding the equivalence
of the compared images (baseline and follow-up) measured
through the SSIM, although they were extremely high in both
acquisitions, it was significantly higher for cns-T1. Usually, this
comparison is performed with measures such as the SNR, though

FIG 1. Representative sagittal section of the acquired 3D T1-weighted
images, brain only (upper image) and brain plus spine (lower image).
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the SSIM takes more factors into account than just the SNR or
the contrast. The high SSIM obtained indicates that the 2 images
compared to estimate the PBVC were almost identical and that
the differences between the 2 acquisitions could not be attributed
to this factor.

The agreement in the SCA measures obtained from brain-T1
and cns-T1 in HCs was unexpectedly low. Segmentations were
revised visually, and no artifacts could explain the difference
found. Finally, because the size of the SCA is relatively small,
small variances in the segmentation make an important differ-
ence in the measured area. When we compared the SCA between
HCs and patients with MS, the sequence used really seemed to
play a role because the sample size needed was more than double
when using measures derived from brain-T1 compared with
cns-T1. The association between the SCA and EDSS in patients
with MS revealed by cns-T1 and brain-T1 measures was highly
equivalent.

The main advantage of replacing brain-T1 with cns-T1 is
that the spinal cord can be assessed without acquiring an addi-
tional sequence, which is fundamental for clinical routine.
Furthermore, if adding an additional spinal cord sequence is not
an option, structural information in this segment can be
obtained using the proposed cns-T1, as recommended in the
MAGNIMs-CMSC_NAIMS consensus.17

There are limitations in the pro-
posed study. A single center was ana-
lyzed, and patients in an early stage of
MS were not included. Thus, the differ-
ences between patients with MS in an
early stage (relapsing-remitting) and
those in a more advanced stage (pro-
gressive MS) could not be assessed in
this study. The role of the spinal cord
lesions in estimating the SCA was not
assessed in this study and should be
considered because it may be a con-
founding factor. The acquisition proto-
cols were not identical in terms of TE
and TR. Brain-T1 was optimized in-
house, and cns-T1 parameters were col-
lected from the proposed multicenter
study by Cohen-Adad et al.9 The brain
volumes were obtained using FastSurfer;

the results obtained with other tools, such as Statistical Parametric
Mapping, were not studied.

CONCLUSIONS
Taken together, the findings suggest that a brain-T1 acquisition
can be replaced by a cns-T1 acquisition, which provides an
enlarged view of the spinal cord with no extra MR imaging acqui-
sition time. Patients with MS may benefit from this approach
because a qualitative and quantitative assessment of both the brain
and the spinal cord is important for diagnosis and monitoring dis-
ease progression and treatment response.
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