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ORIGINAL RESEARCH
ADULT BRAIN

Deep Learning of Time–Signal Intensity Curves from
Dynamic Susceptibility Contrast Imaging Enables Tissue

Labeling and Prediction of Survival in Glioblastoma
J. Yun, S. Yun, J.E. Park, E.-N. Cheong, S.Y. Park, N. Kim, and H.S. Kim

ABSTRACT

BACKGROUND AND PURPOSE: An autoencoder can learn representative time–signal intensity patterns to provide tissue heterogeneity
measures using dynamic susceptibility contrast MR imaging. The aim of this study was to investigate whether such an autoencoder-based
pattern analysis could provide interpretable tissue labeling and prognostic value in isocitrate dehydrogenase (IDH) wild-type glioblastoma.

MATERIALS AND METHODS: Preoperative dynamic susceptibility contrast MR images were obtained from 272 patients with IDH
wild-type glioblastoma (training and validation, 183 and 89 patients, respectively). The autoencoder was applied to the dynamic sus-
ceptibility contrast MR imaging time–signal intensity curves of tumor and peritumoral areas. Representative perfusion patterns
were defined by voxelwise K-means clustering using autoencoder latent features. Perfusion patterns were labeled by comparing
parameters with anatomic reference tissues for baseline, signal drop, and percentage recovery. In the validation set (n ¼ 89), a sur-
vival model was created from representative patterns and clinical predictors using Cox proportional hazard regression analysis, and
its performance was calculated using the Harrell C-index.

RESULTS: Eighty-nine patients were enrolled. Five representative perfusion patterns were used to characterize tissues as high angio-
genic tumor, low angiogenic/cellular tumor, perinecrotic lesion, infiltrated edema, and vasogenic edema. Of these, the low angio-
genic/cellular tumor (hazard ratio, 2.18; P ¼ .047) and infiltrated edema patterns (hazard ratio, 1.88; P ¼ .009) in peritumoral areas
showed significant prognostic value. The combined perfusion patterns and clinical predictors (C-index, 0.72) improved prognostica-
tion when added to clinical predictors (C-index, 0.55).

CONCLUSIONS: The autoencoder perfusion pattern analysis enabled tissue characterization of peritumoral areas, providing hetero-
geneity and dynamic information that may provide useful prognostic information in IDH wild-type glioblastoma.

ABBREVIATIONS: CEL ¼ contrast-enhancing lesion; EGFR ¼ epidermal growth factor receptor; HR ¼ hazard ratio; IDH ¼ isocitrate dehydrogenase; KPS ¼
Karnofsky Performance Score; NEL ¼ peritumoral nonenhancing lesion; OS ¼ overall survival; rCBV ¼ relative CBV; RT ¼ radiation therapy; TMZ ¼ temozolomide

Intratumoral heterogeneity has been identified as a key factor
indicating treatment resistance in glioblastoma,1,2 with various

microenvironments and their genetic subtypes containing treat-
ment-resistant cell populations that result in disease recurrence.
The vascular microenvironment of glioblastoma distinguishes it
from lower-grade gliomas,3 and vascular co-option, angiogenesis,
and vasculogenesis result in hypoxia, treatment resistance, and a
poor prognosis.4 Thus, defining the vascular characteristics of
glioblastoma can facilitate elucidation of potential treatment re-
sistance and provide prognostic value in patients with glioblas-
toma. Recurrence of glioblastoma typically develops around the
primary tumor site and may be attributed to the remaining non-
enhancing peritumoral area.5 Intratumoral heterogeneity is also
important in nonenhancing peritumoral areas that have malig-
nant tumor cells and contain different levels of genetic muta-
tions.6 Therefore, noninvasive demonstration of intratumoral
heterogeneity, including vasogenic edema and infiltrative tumor
tissue, may provide value for survival prediction.7

Dynamic susceptibility contrast MR imaging (DSC MR imag-
ing) is a noninvasive imaging technique that can provide vascular
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information.7,8 The most widely used perfusion parameter is the
relative cerebral blood volume (rCBV), with high preoperative
rCBV values in tumor and peritumoral areas being associated
with a poor prognosis in patients with glioblastoma.9-11 However,
rCBV imaging provides a 1D (scalar) value that does not allow
complete characterization of dynamic perfusion information.12

The original complex dynamic information of DSC-MR imaging
time–signal intensity curves may contain hidden information,
and autoencoders may provide more robust representations of
this information by reconstructing unlabeled input data from the
latent representation space.13 We hypothesized that essential in-
formation could be extracted using an autoencoder to analyze the
entirety of the perfusion signal intensity derived from DSC MR
imaging.

An autoencoder is a type of artificial neural network used to
learn unlabeled data and efficiently compress data in feature
space.14-16 An autoencoder can be used to capture the variance of
time–signal intensity curves from DSC imaging,12 and various
aspects of the DSC time–signal intensity curves can be captured
in the feature space and clustered to provide unique perfusion
patterns when translated to the data (imaging) space.

The preoperative characterization of vascular heterogeneity
has been studied using vascular habitat analysis of rCBV,10 but
direct perfusion pattern analysis of DSC MR imaging time–signal
intensity curves has not been previously performed. We hypothe-
sized that an autoencoder-derived time–signal intensity analysis
would allow high-dimensionality perfusion pattern analysis of
DSC-MR imaging data and provide useful imaging signatures for
prognostication. We limited our study to isocitrate dehydrogenase
(IDH) wild-type glioma because the IDH-mutant type has a bet-
ter prognosis, and the term “glioblastoma” was limited to IDH
wild-type according to the World Health Organization 2021 clas-
sification of CNS tumors. The aim of this study was to investigate
whether an autoencoder-based pattern analysis of tumor and
peritumoral areas on perfusion MR imaging could provide inter-
pretable tissue labeling and prognostic value in preoperative
treatment-naïve IDH wild-type glioblastoma.

MATERIALS AND METHODS
Patients
The study protocol was approved by the institutional review
board of Asan Medical Center, and the requirement for informed
patient consent was waived because of the retrospective study
design (No. 2019–0594). The inclusion process is shown in the
Online Supplemental Data. The training data set was part of a
cohort used in a previous autoencoder study of brain tumor dif-
ferentiation.12 The patient eligibility criteria were pathologically
confirmed glioblastomas identified from the radiologic database
of Asan Medical Center from September 2016 to March 2019;
two hundred fifty-three patients were identified. Among them, 70
patients were excluded because 1) either immunohistochemistry
for the IDH1 R132H mutation or IDH2 sequencing was not per-
formed when the patients were 55 years of age or younger (n ¼
23), or 2) they were diagnosed with IDH-mutant gliomas accord-
ing to the World Health Organization 2021 classification of CNS
tumors (n ¼ 47). This process led to 183 patients being included
in the training set.

For the network validation set (study population), the same eli-
gibility criteria were used; a total of 113 patients with newly diag-
nosed (treatment-naïve) IDH wild-type glioblastoma treated at
the same tertiary hospital between April 2019 and March 2021
were included. Preoperative structural imaging and DSC imaging
were performed. Among them, patients were excluded if they had
undergone surgical treatment before MR imaging (n ¼ 15) or if
the quality of DSC imaging was inadequate for image analysis
because of the presence of artifacts (n¼ 9). Therefore, the autoen-
coder was pretrained on a set that included 183 patients (mean
age, 58.52 years; 110 [60.1%] men), and the study population
included 89 patients (mean age, 57.83 years; 43 [48.3%] men).

Clinical Predictors and Endpoints
The recorded patient characteristics included age at diagnosis,
sex, epidermal growth factor receptor (EGFR) mutation status,
Karnofsky Performance Score (KPS,$80 or,80), maximum tu-
mor diameter, extent of resection (biopsy, partial resection, or
gross total resection), and methods of chemoradiation therapy.
Standard concurrent chemoradiotherapy17 consisted of fractio-
nated focal radiation therapy (RT) at a dose of 2Gy per fraction
administered once daily 5 days per week for 6 weeks, for a total
dose of 60Gy. Concomitant chemotherapy consisted of temozo-
lomide (TMZ) at a dose of 75mg/m�2 per day, administered 7
days per week from the first to the last day of RT. After a 4-week
break, the patients then received up to 6 cycles of adjuvant TMZ
according to the standard 5-day schedule every 4 weeks.
RT1TMZ therapy refers to hypofractionated RT for elderly
patients with a hypofractionated radiation schedule (40Gy in 15
fractions for 3weeks), which has been suggested for elderly
patients and found to be equivalent18 to a standard 6-week sched-
ule (60Gy in 30 fractions for 6weeks). For the study population,
overall survival (OS) was calculated from the day of histopatho-
logic diagnosis until the day of death, as obtained from the
national health care data linked to our hospital. Patients who
were alive at the time of analysis (n ¼ 33, 35.1% of the validation
set) were right-censored and included in the analysis. All patients
were followed up every 3–6months after surgical treatment. The
minimum follow-up time to ascertain survival was 1 year.

Imaging Acquisition and Preprocessing
All MR imaging of the enrolled patients was acquired on a 3T
scanner (Achieva or Ingenia; Philips Healthcare) equipped with a
32-channel head coil. The imaging acquisition and preprocessing
methods are described in the Online Supplemental Data.

Autoencoder Analysis and Perfusion Patterns
The overall study process is shown in Fig 1. The proposed algo-
rithm consists of 3 main stages: 1) autoencoder analysis and clus-
tering of contrast-enhancing lesions (CELs) and nonenhancing
lesions (NELs), 2) creation of perfusion patterns from autoen-
coder clusters, and 3) characterization of perfusion patterns using
reference tissue.

Preprocessing and Network Architecture. For scale normaliza-
tion, the DSC time–signal intensity curves were rescaled accord-
ing to the mean value of the white matter of each brain. A total of
3,103,293 time–signal intensity curves were used for the network
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training set, 587,184 (19%), 2,166,171 (70%), and 349,938 (11%)
for CELs, NELs, and necrotic lesions, respectively.

Representations were extracted from high-dimensional DSC
time–signal intensity data using an autoencoder that consisted of
2 parts: an encoder and a decoder. Each time–signal intensity

curve of 60 timepoints was compressed into 5 feature dimensions
using the encoder and then decompressed to a representation of
the original curve using the decoder. The encoder had a single 1D
convolution block with 32 learnable filters using a kernel size of 2
and was followed by a rectified linear unit, max pooling, and

FIG 1. Summary of the extraction of autoencoder features from DSC imaging. The structure of the autoencoder network showed that the
encoder is a 1D convolutional layer, and the decoder consists of 2 fully connected layers of the neural network. The number of latent spaces
was set at 5. A, DSC time–signal intensity curves were learned by an autoencoder, and the latent spaces were obtained as autoencoder features.
B, The autoencoder features were clustered into 8 patterns representing 4 perfusion patterns in CEL and 4 in NEL. C, Perfusion patterns of refer-
ence tissues (gray matter, white matter, CSF, and arteries) were separately obtained. D, The distributions of perfusion patterns within CEL and
NEL were calculated. Note that the numbers indicate scale-normalized signal intensities of the time–signal intensity of DSC imaging.
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batch normalization. A connection dropout probability of 0.7
was introduced to prevent overfitting. Using 2 fully-connected
layers, the decoder reconstructed the representations derived
from the encoder into representations of the original 60-time
point data. The autoencoder was trained by minimizing the mean
squared error between the input and reconstructed signals. An
Adam optimizer with a learning rate of 1� 10�8 and a batch size
of 100,000 was used.

Optimization of Autoencoder Clusters. K-means clustering was
applied to the autoencoder-derived representations of the CELs
and NELs. The optimal number of clusters is an important issue
in K-means clustering, and silhouette analysis was, therefore,
used to define the optimal number.19 The silhouette method cal-
culates how close each point in 1 cluster is to points in neighbor-
ing clusters and thus provides a way to assess parameters such as
the number of clusters. Silhouette scores have a range of [�1, 1];
a score of zero indicates that the sample is on or very close to the
decision boundary between 2 neighboring clusters, while a score
near to11 indicates that the sample is far away from neighboring
clusters; a high value indicates that the clustering configuration is
appropriate. EGFR mutation status was set as the output value to
optimize the number of clusters because it is a binary out-
come.12,20 We chose EGFRmutation status as the output value to
optimize the number of clusters because it is a binary outcome
and because previous literature demonstrated differences in per-
fusion parameters between EGFR-amplified and nonamplified
groups, with a higher mean normalized CBV and higher 95th
percentile of normalized CBF following EGFR amplification in
IDH wild-type glioblastoma.21

The autoencoder representations in the latent space were clus-
tered and mapped onto the anatomic images for visualization
using the optimal number of clusters defined above. The distribu-
tions of perfusion patterns were calculated within CELs and NELs.

Tissue Labeling of Perfusion Patterns. To characterize the perfu-
sion patterns, we calculated the baseline signal, depth of the signal
drop, slope of the signal decrease (drop speed), and percentage
recovery from each perfusion pattern (Fig 2). The perfusion pat-
terns were first normalized using minimum-maximum scaling
before we applied the following processing steps:

1) The baseline signal (S0) was calculated as the median signal
intensity between timepoints 3 and 9.

2) The depth of the signal drop was calculated as the difference
between the baseline signal and the minimum signal intensity
(Smin): (S0� Smin).

3) The drop speed was calculated as the depth of the signal drop di-
vided by the time (t) for baseline to reach minimum: (S0� Smin/t).
Here, the time (t) was defined as the initial time at which a
signal decrease of .5% of the maximum signal decrease
was observed across serial timepoints.

4) The percentage recovery (adopted from previous studies22,23)
representing the percentage of signal intensity recovered at the
end of the first pass of contrast agent, relative to baseline, was
calculated. The postcontrast signal intensity S1 was calculated
as the average signal intensity between 30 and 50 timepoints.

With S1 as the postcontrast signal intensity, the percentage re-
covery was described as (S1� Smin) / (S0� Smin).

Reference tissue was defined for arteries, gray matter, white mat-
ter, and CSF using probability template matching in SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12) to label brain regions.24

For arteries, an expert neuroradiologist (J.E.P., with 8 years of neu-
roradiology experience) carefully selected 2-3 slices and drew an
ROI within the MCA ipsilateral to the tumor. For gray matter,
white matter, and CSF, the same reader refined the ROIs using
brain templates obtained from SPM (SPM12). The mean ROI sizes
were 30 voxels for arteries, 1845 voxels for gray matter, 7380 voxels
for white matter, and 1528 voxels for CSF (Fig 1).

ADC Calculation for Each Perfusion Pattern. To support tissue
assignment using perfusion parameters, the mean ADC value
within each perfusion pattern was extracted. The details of this
procedure are provided in the Online Supplemental Data.

According to signal drop, drop speed, baseline, and percent-
age recovery compared with reference tissues of artery, gray
matter, white matter, and CSF, each perfusion pattern within
the tumoral ROI was assigned one of the following: high angio-
genic tumor, low angiogenic/cellular tumor, perinecrotic lesion,
infiltrative edema, or vasogenic edema. The ADC value was also
considered. High angiogenic tumor was assigned when a perfu-
sion pattern showed a high signal drop and drop speed, and low
angiogenic/cellular tumor, when the perfusion pattern showed
a low baseline and signal drop, as well as a low ADC value.
Perinecrotic lesion was assigned to a contrast-enhancing lesion
when a perfusion pattern showed a high baseline with a low per-
centage recovery. Infiltrative edema was assigned when a perfu-
sion pattern showed an intermediate-to-high baseline and drop
speed. Vasogenic edema was assigned when a perfusion pattern
showed a high baseline with a low percentage recovery.

Statistical Analysis
Categoric variables are reported as frequencies and proportions, and
continuous variables are reported as means. Differences among cate-
goric variables and differences among continuous variables were
assessed using the x 2 test and independent t test, respectively.

The silhouette score was calculated to predict the EGFRmuta-
tion status. The proportions of autoencoder clusters (perfusion
patterns) were tested for group differences between EGFR-ampli-
fied and -nonamplified groups using MANCOVA.

For the ADC values, differences between each perfusion pa-
rameter were compared using ANOVA. The ADC values showed
normality on an D’Agostino-Pearson test. Correlation coeffi-
cients between characteristics of the time–signal intensity curves
and ADC were calculated with a Pearson correlation.

For survival analysis, univariate analysis with Cox regression
or the Kaplan-Meier method (log-rank test) was performed to an-
alyze associations of perfusion patterns with OS. First, the num-
ber of voxels in each pattern was calculated. Second, the
percentage of each pattern within the contrast-enhancing lesion
(CEL) volume or peritumoral nonenhancing lesion (NEL) vol-
ume was calculated (number of voxels in pattern/number of vox-
els in the CEL volume). Hazard ratios (HRs) reported herein
indicate the relative change in hazard that a 1-U (10,000 voxels
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for the number of voxels and 1% for percentage) increase in each
imaging parameter incurred in this study. A univariate Cox pro-
portional hazard regression analysis was also used to test associa-
tions between OS and clinical predictors. A model combining
statistically significant perfusion patterns and clinical predictors
was created, and its prognostic performance was calculated using
10-fold cross-validation, which enables unbiased prediction within
the sample.25 Discrimination was measured with the Harrell con-
cordance probability index (C-index).

Statistical analyses were performed using R statistical software
(R version 4.0.2; http://www.r-project.org/). A P value , .05 was
considered statistically significant.

RESULTS
Patient Demographics
The clinical characteristics of the included patients are summarized
in Table 1. The validation set included 89 patients (mean age, 57.8
[SD, 12.8] years; 46 women), most of whom (57.3%) underwent
gross total resection. The median OS was 14.4months.

Perfusion Patterns of Reference Tissues
The Online Supplemental Data show the values of the 4 parame-
ters extracted from the DSC time–signal intensity curve and the
ADC values of the perfusion patterns of the reference tissue. On
the basis of the scale-normalized signal intensity of the DSC
imaging (expressing the entire signal intensity between a mini-
mum of 0 and maximum of 5), the perfusion patterns of arteries
exhibited the highest signal drop (1.16) and drop speed (0.24).
The perfusion patterns of gray matter had higher mean baseline
signal (1.18 versus 1.11), signal drop (0.64 versus 0.37), and drop
speed (0.14 versus 0.07) but a lower percentage recovery (0.79
versus 0.81) than those of white matter. The perfusion patterns of
CSF showed higher baseline (3.04) and lower percentage recovery
(0.65) than the other tissue types.

Determination of Autoencoder Clusters and Tissue Labeling
Four clusters were chosen for the CELs and NELs of glioblasto-
mas because this number had the highest silhouette score
for the distinction of EGFR mutation status. The Online

FIG 2. Calculation of perfusion patterns (A) and representative perfusion patterns (B–D). A, The graph shows signal intensity–time curve ele-
ments that can reflect the characteristics of each tissue, such as the baseline signal, minimum signal intensity, and postcontrast signal intensity.
On the right side is a summary of the formulas used to calculate each element. Representative perfusion patterns of the reference tissues (B),
CEL (C), and NEL (D). B, CSF shows the highest baseline (black line), vascular tissue shows the highest signal drop and drop speed (red line), and
normal brain tissue shows the lowest baseline (dotted lines). C, In CELs, perfusion patterns with high signal drop and drop speed are labeled as
high angiogenic tumor (red lines), perfusion patterns with the highest baseline and lowest percent recovery are labeled perinecrotic lesion (blue
line), and perfusion patterns with the lowest baseline and lowest signal drop are labeled low angiogenic/cellular tumor (black dotted line). D, In
NEL, a perfusion pattern with intermediate-to-high baseline and intermediate-to-low signal drop and drop speed is labeled infiltrated edema
(green line). A perfusion pattern with the highest baseline and lowest percentage recovery is labeled vasogenic edema (blue line).
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Supplemental Data demonstrate the results of the K-means
clustering and silhouette scores. A MANCOVA was used to
compare the proportions of temporal patterns as a group analy-
sis for EGFR; however, there was no significant difference in the
distribution of clustering patterns in CELs (P ¼ .446) or NELs
(P ¼ .974).

The perfusion patterns of the 4 clusters were then compared
with the perfusion patterns of reference tissues (Fig 2 and Online
Supplemental Data).

ANOVA showed statistically significant differences (P, .001)
among the perfusion patterns in both CELs and NELs. Among
these, perinecrotic lesions in CELs had the highest ADC, while
low angiogenic/cellular tumor had the lowest ADC.

There was a strong positive correlation between the ADC
value and baseline signal intensity in both CELs (r ¼ 0.448,
P, .001) and NELs (r ¼ 0.631, P, .001). There was a mild
negative correlation between the ADC value and signal drop
(r ¼ �0.253, P, .001) and between the ADC value and drop
speed (r ¼ �0.256, P, .001) in NELs. These findings corre-
spond well with the angiogenic assignment of the tumors in this
study.

In CELs, 2 perfusion patterns had the highest signal drop
(1.32 and 0.95) and drop speed (0.23 and 0.21) and were labeled
“high angiogenic tumor.” A perfusion pattern with the highest
baseline (2.08) and the lowest percent recovery (0.58) was labeled
“perinecrotic lesion.” In NELs, a perfusion pattern with the high-
est signal drop (1.1) and drop speed (0.2) was labeled “high
angiogenic tumor.” In NELs, perfusion patterns with the highest
baseline (2.25) and the lowest percent recovery (0.78) were la-
beled “vasogenic edema,” whereas perfusion patterns with the
lowest baseline (0.76 in CELs and 0.81 in NELs) and lowest signal
drop (0.62 in CELs and 0.51 in NELs) as well as the lowest ADC
were labeled “low angiogenic/cellular tumor.” In NELs, a perfu-
sion pattern with intermediate-to-high baseline (1.58) and inter-
mediate-to-low signal drop (0.51) and drop speed (0.10) was
labeled “infiltrated edema.”

Exploratory Analysis of Survival Prediction Using Perfusion
Patterns
The results of association of perfusion patterns with survival are
shown in Table 2. The anonymized data for perfusion parameters
including the number of voxels and percentages are in the Online
Supplemental Data. In the univariable analysis, no association
with OS was found for any of the perfusion patterns in CELs.
However, in NELs, low angiogenic/cellular tumors (HR, 3.57; P ¼
.047) and infiltrated edema patterns (HR, 1.79; P ¼ .009) in the
peritumoral area showed significant associations with OS. There
was no significant association between the percentage of perfusion
parameters and OS.

Among clinical predictors, a high KPS score equal to .90
(HR, 0.85; 95% CI, 0.79–0.93; P ¼ . 21) and extent of resection
(biopsy or partial resection compared with gross total resection,
HR, 2.12–2.43; 95% CI, 1.01–5.04; largest P value¼ .04) were sig-
nificantly associated with OS (Online Supplemental Data). There
was no association between the ADC (either the ADC in CELs or
NELs) and OS (Online Supplemental Data).

The C-index for NEL perfusion patterns alone was 0.57 (95%
CI, 0.55–0.60), while that for NEL perfusion patterns combined
with clinical predictors (extent of resection and age) was 0.72
(95% CI, 0.70–0.74). Representative cases are shown in Fig 3 and
the Online Supplemental Data. Patients with tumors showing a
high proportion of infiltrative edema and low angiogenesis died
earlier than those with tumors with a low proportion of infiltra-
tive edema and low angiogenesis but similar conditions of tumor
resection.

The Kaplan-Meier survival curve for OS based on the pres-
ence of infiltrative edema is shown in Fig 4. The optimal cutoff
value for distinguishing the low- and high-risk groups was
.6017 voxels showing infiltrative edema. A log-rank test showed
a significant difference between the low- and high-risk groups
(P¼ .011).

Table 1: Baseline clinical characteristics of the study population
(n = 89)

Characteristics
Age (yr)a 57.8 (SD, 12.8)
Sex (male/female) 43:46
EGFR mutation–positive 41 (46.1)
MGMT promoter methylation–positive status 30 (33.7)
KPS at treatment initiation (%)
.70 75 (84.3)
#70 14 (15.7)

Surgical extent (%)
Gross total resection 51 (57.3)
Partial resection 28 (31.5)
Biopsy 10 (11.2)

Maximal diameter (mm)a 44.9 (SD, 15.4)
Adjuvant treatment (%)
Standard CCRT1TMZ 82 (92.1)
RT1TMZ 11 (12.4)

OS (months)a 17.7 (SD, 11.7)

Note:—CCRT indicates concurrent chemoradiation therapy; RT1TMZ, hypofrac-
tionated RT for elderly patients with a hypofractionated radiation schedule
(40Gy in 15 fractions for 3weeks) with TMZ.
a Data are expressed as means.

Table 2: Exploratory analysis of perfusion patterns for predict-
ing time-to-progression in patients with glioblastoma

CEL (No. of voxels)
Time-to-Progression

HRa 95% CI P Value
High angiogenic tumor (1) 0.13 0.01–4.59 .25
High angiogenic tumor (2) 4.74 0.01–231.7 .62
Low angiogenic/cellular tumor 0.99 0.10 –9.91 .99
Perinecrotic lesion 22.3 0.44–111.30 .11
CEL (%)
High angiogenic tumor (1) 0.71 0.20–2.51 .59
High angiogenic tumor (2) 0.65 0.21–2.04 .46
Low angiogenic/cellular tumor 2.14 0.33–14.03 .42
Perinecrotic lesion 2.67 0.52–13.63 .24

NEL (No. of voxels)
High angiogenic tumor (3) 0.95 0.29–3.06 .93
Low angiogenic/cellular tumor 2.18 1.01–12.57 .047
Infiltrated edema 1.88 1.35–2.78 .009
Vasogenic edema 1.04 0.71–1.52 .84

NEL
High angiogenic tumor (3) 0.25 0.21–5.31 .37
Low angiogenic/cellular tumor 0.41 0.08–1.99 .27
Infiltrated edema 2.14 0.40–11.35 .37
Vasogenic edema 4.20 0.52–33.98 .18

aHRs reported here indicate the relative change in hazard that a 1-U (10,000 voxels for
the number of voxels and 1% for percentage) increase in each imaging parameter incurs.
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FIG 3. Prognostic implication of perfusion patterns of NEL in patients with glioblastoma. A, A 62-year-old man with IDH wild-type glioblastoma
(EGFR-negative) exhibited high proportions of infiltrated edema in an NEL in the cerebellum. After maximal safe resection of the contrast-
enhancing lesion and concurrent chemoradiotherapy, the patient showed progression at 120 days and died 182 days after diagnosis. Note that
the recurrence occurred in both the NEL and the original CEL. B, A 59-year-old man with IDH wild-type glioblastoma (EGFR-negative) had high
proportions of infiltrative edema within the NEL. After maximal safe resection, the infiltrative edema was mostly resected. After concurrent
chemoradiotherapy, the patient showed progression at 1200days and died 1237 days after diagnosis. Note that the recurrence occurred distant
from the primary site.
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DISCUSSION
In this study, we investigated whether an autoencoder trained to
analyze perfusion patterns extracted from DSC imaging could
depict perfusion heterogeneity and whether it had prognostic
value in patients with IDH wild-type glioblastoma. Using perfu-
sion patterns based on unsupervised learning by the autoencoder
and K-means clustering, we performed tissue labeling by compar-
ison with the perfusion patterns obtained from reference tissues
of the MCA, gray matter, white matter, and CSF. Our results
demonstrate that the preoperative perfusion patterns, especially
those from the peritumoral nonenhancing region, contained
prognostic information. A high proportion of infiltrative edema
and low angiogenic/cellular tumor in the peritumoral nonen-
hancing region, old age, and a low extent of surgery indicated
poor patient survival. Thus, along with a maximal safe resection
strategy according to the current guidelines for patients with glio-
blastoma, the depiction of preoperative perfusion patterns and
localization of infiltrative and low angiogenic/cellular tumor por-
tions could be helpful for providing important early information
on survival.

The nonenhancing regions of glioblastoma consist of areas of
edema and infiltrative tumor tissue that usually remain after sur-
gical resection, and most recurrences occur within the original
treatment field.26-29 Several studies have investigated perfusion
MR imaging findings in the nonenhancing peritumoral area as

potential prognostic factors.5,11,30 Jain
et al11 revealed that rCBV measure-
ments of the nonenhancing region of
glioblastoma provide unique prognostic
information independent of morpho-
logic, genomic, and clinical features.
Lee et al30 investigated tumor-derived
texture feature ratios extracted from
contrast-enhancing and nonenhancing
lesions on perfusion MR imaging–
based CBV maps. A recent voxelwise
rCBV and CBF analysis showed that
vascular habitats had prognostic
value in patients with glioblastoma.10

Nevertheless, rCBV analysis does not
allow depiction of the complex nature
of DSC time–signal intensity curves,
such as drop speed and percentage re-
covery, and vascular habitat is derived
from a unidirectional high or low pat-
tern of vascular density. For example,
rCBV does not reflect the permeability
of tumor vessels, which can be deter-
mined using parameters such as the
percentage recovery calculated from
DSCMR imaging.31

However, recent machine learning
and deep learning studies have revealed
possibilities for analyzing the high-
dimensional data of the time–signal
intensity curves obtained from DSC
images.12,20,31,32 Akbari et al20 charac-

terized perfusion characteristics with a support vector machine
classifier to create a map of heterogeneity within the peritumoral
region. Bakas et al32 constructed a quantitative within-patient
peritumoral heterogeneity index for evaluating EGFR status using
contrasting perfusion patterns of immediate and distant peritu-
moral edema. A recent study used a long short-term memory–
based model to predict IDH genotypes on DSC MR imaging of
gliomas.31 These studies have revealed that DSC MR imaging
contains more voxelwise information than is represented by a
simple rCBV map. Our study is in accordance with the above-
mentioned studies, in that we found that analysis of the entire
DSC time–signal intensity curve with a deep learning technique
using an autoencoder made it possible to compress voxelwise
data while extracting essential information.12,13

The interpretation of high-dimensional information from
unsupervised learning is challenging. The tissue interpretation
performed in this study differs from that in previous work in 2
ways: First, the perfusion patterns were labeled according to
similarities with reference tissues of the ipsilateral MCA, contra-
lateral normal-appearing gray/white matter, and CSF. For the
reference tissues, we applied robust tissue segmentation using
established software and included a large number of voxels, dif-
fering from a previous study that included 2–3 voxels of refer-
ence tissue.20 Second, the perfusion patterns used entire tumoral
and peritumoral voxels, labeling them as high angiogenic tumor,

FIG 4. Kaplan-Meier survival curve for overall survival based on infiltrative edema. The optimal
cutoff value for distinguishing the low- and high-risk groups was .6017 voxels of infiltrative
edema. This cutoff value separated the survival groups with a significant difference according to
a log-rank test (P¼ . 011).
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perinecrotic lesion, low angiogenic/cellular tumor, infiltrative
edema, or vasogenic edema by considering their perfusion
parameters, including baseline signal, signal drop, drop speed,
and percentage recovery.

Previous unsupervised learning studies used a heterogeneity
index,20,32 but this is an oversimplified measure and limits bio-
logic interpretation. In addition, infiltrated edema was limited to
a 2-cm margin around the enhancing tumor,10 whereas we were
able to identify infiltrated edema from all peritumoral voxels.
This finding highlights a strength of our study, in that we first
applied tissue labeling using the perfusion patterns of the entire
tumoral and peritumoral voxels, enhancing the interpretability of
unsupervised learning including clustering and autoencoder anal-
ysis. In this study, edema was assigned using a higher baseline
value than white matter in NELs. Furthermore, assignment of
angiogenic tumors was possible using high signal drop and drop
speed compared with gray and white matter. We believe that this
method will help researchers to identify the perfusion pattern of
tumor in comparison with reference tissues.

Moreover, the ADC value was adjunctly used to explain the
tissue labeling, which enhances the biologic explanation of the
perfusion patterns by combining both cellularity and characteris-
tics of time–signal intensity curve analyses including baseline, sig-
nal drop, and percentage recovery. In particular, percentage
recovery is known to be helpful for characterizing permeability,
with high permeability leading to low percentage recovery22,23

because of the high T1 effect of gadolinium-based contrast leak-
age into interstitial spaces.

In CELs, there were 2 each of high angiogenic tumors, low
angiogenic/cellular tumors, and perinecrotic lesions. This finding
was also supported by ADC analysis, which showed that perine-
crotic lesions exhibited a high ADC, while low angiogenic/cellular
tumor exhibited a low ADC. On histopathology, the tumorigenic
“perinecrotic niche” is known to have quiescent stemlike tumor
cells in glioblastoma33 and is distinct from other tissue types.
High angiogenic tumors exhibited the highest signal drop (1.32
and 0.95) and drop speed (0.23 and 0.21), demonstrating neoan-
giogenesis within the tumor because high signal drop and drop
speed are correlated with a high rCBV.34 It is unclear why 2 dis-
tinct high angiogenic perfusion patterns were obtained, and
future studies with further molecular subgroups may reveal the
meaning of this difference.

There are several limitations to this study. First, it used a ret-
rospective design and had a small cohort size; these factors limit
the generalizability and statistical power of our findings. Second,
despite the use of an optimized number of clusters identified by
silhouette analysis, MANCOVA showed no significant difference
in the distribution of clustering patterns between CELs and
NELs. In a previous study, a higher mean nCBV and higher 95th
percentile of nCBF were significant predictors of EGFR amplifica-
tion in IDH wild-type glioblastoma.21 Therefore, we expected
that the perfusion MR imaging values would change according to
the EGFR amplification results, but our results showed no differ-
ence. MANCOVA is extremely sensitive to outliers, which may
produce either type I or type II error.35 It is, therefore, necessary
to perform further research with more clusters or optimized clus-
ters of perfusion patterns.

CONCLUSIONS
Autoencoder-derived perfusion patterns could be labeled with
different brain tissues on the basis of the interpretation of perfu-
sion patterns of reference tissues. The perfusion patterns could be
useful biomarkers for prognostication, especially low angiogenic/
cellular tumor and infiltrative edema perfusion patterns in non-
enhancing peritumoral areas. Autoencoder analysis enabled cap-
ture of infiltrative tumorlike perfusion patterns in the brain, and
this study demonstrated the feasibility of voxelwise temporal in-
formation as a prognostic indicator in patients with IDH wild-
type glioblastoma.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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