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 ABSTRACT 

BACKGROUND AND PURPOSE: The efficacy of long-term chronic subthalamic nucleus deep brain stimulation (STN-DBS) in treating 

Parkinson's Disease (PD) exhibits substantial variability among individuals. The preoperative identification of suitable DBS candidates 

through predictive means becomes crucial. Our study aims to investigate the predictive value of characterizing individualized 

structural covariance networks for long-term efficacy of DBS, offering patients a precise and cost-effective preoperative screening 

tool. 

MATERIALS AND METHODS: We included 138 PD patients and 40 healthy controls. We developed individualized structural covariance 

networks from T1-weighted images utilizing Network Template Perturbation, and computed the networks' topological characteristics. 

Patients were categorized according to their long-term motor improvement following STN-DBS. Intergroup analyses were conducted 

on individual network edges and topological indices, alongside correlation analyses with long-term outcomes for the entire patient 

cohort. Finally, machine learning (ML) algorithms were employed for regression and classification to predict post-DBS motor 

improvement. 

RESULTS: Among the PD patients, six edges (left Middle Frontal and left Caudate Nucleus, right Olfactory and right Insula, left 

Superior Medial Frontal Gyrus and right Insula, right Middle Frontal and left Paracentral Lobule, right Middle Frontal and Cerebellum, 

left Lobule VIIb of the Cerebellum and the vermis of the Cerebellum) exhibited significant results in intergroup comparisons and 

correlation analyses. Increased degree centrality and local efficiency of the cerebellum, parahippocampal gyrus, and postcentral 

gyrus were associated with DBS improvement. A regression model constructed from these six edges revealed a significant correlation 

between predicted and observed changes in the unified Parkinson's disease rating scale (R=0.671, P<0.001), and receiver operating 

characteristic analysis demonstrated an area under the curve of 0.802, effectively distinguishing between patients with good and 

moderate improvement post-DBS. 

CONCLUSIONS: Our findings reveal the link between individual structural covariance network fingerprints in PD patients and long-

term motor outcome following STN-DBS. Additionally, binary and continuous cerebellum-basal ganglia-frontal structural covariance 

network edges have emerged as potential predictive biomarkers for DBS motor outcome. 

 ABBREVIATIONS: subthalamic nucleus deep brain stimulation = STN-DBS; Parkinson's Disease = PD; machine learning = ML); Network 

Template Perturbation = NTP. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: The effectiveness of long-term STN-DBS in treating PD varies significantly among individuals. The 

preoperative identification of suitable DBS candidates through predictive methods becomes imperative. The clinically utilized 

dopamine challenge test demonstrates limited efficacy in predicting long-term outcomes. With the recognition of aberrant 

characteristics in the whole-brain networks in PD, individual brain networks constructed based on fMRI are used for postoperative 

predictions. However, the extended scan duration, notable variability, and economic constraints associated with fMRI restrict its 

applicability and practicality. Therefore, there is a clinical need for predictive methods that exhibit both robust efficacy and 

economic feasibility. 

KEY FINDINGS: Binary and continuous structural covariance network edges linking the cerebellum, basal ganglia, and frontal regions 

have emerged as potential predictive biomarkers for the motor outcome of DBS. 

KNOWLEDGE ADVANCEMENT: This study contributes to providing an economically viable and objectively convenient predictive tool 

for identifying suitable candidates for DBS. 

 Published March 12, 2024 as 10.3174/ajnr.A8245

 Copyright 2024 by American Society of Neuroradiology.
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INTRODUCTION 

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective therapy for improving long-term motor symptoms in patients 

with Parkinson's disease (PD) [1, 2]. However, the long-term effectiveness of DBS relies on preoperative patient selection, precise targeting 

during implantation, postoperative programming, and ongoing medicine management [3]. Long-term STN-DBS can lead to the motor and 

cognitive complications in some patients [4], and there is considerable individual variation in the postoperative improvement of motor 

symptoms [5, 6]. Therefore, identifying effective predictive factors preoperatively is crucial for patient selection. 

In many DBS centers, Levodopa Challenge Test (LCT) serves as a critical predictor for evaluating the motor prognosis of DBS [7, 8]. 

While LCT proves effective in identifying patients with a non-responsive reaction to levodopa, its predictive accuracy for postoperative 

long-term motor outcomes exhibits significant variability and lacks precision [7-10]. Additionally, the emotional burden induced by the 

Med-OFF state and the hospital environment can lead to inaccuracies in the LCT results [11]. Existing research suggests that the 

modulation of motor symptoms in PD patients through STN-DBS is based on the regulation of large-scale brain networks [12, 13]. Due to 

the dynamic time characteristics of fMRI [14], individual brain networks constructed based on fMRI are increasingly employed for 

postoperative prediction [15, 16]. However, noise sources such as physiological factors (e.g., motion, respiration), miscellaneous non-

physiological factors (e.g., scanner drift), coupled with the several minutes scans, contribute to significant variability in fMRI [17]. 

Additionally, economic constraints associated with fMRI also limit its applicability and value. All above potentially render it unsuitable 

for all DBS centers. Given these challenges, there is a pressing need for a more objective and stable postoperative prediction method. The 

advantages of T1 scans include shorter scan times, minimal sensitivity to physiological influences, and controlled error within 2% in 

repeated scans on the same equipment, demonstrating the stability of its scan results [18, 19]. T1 scans are a routine sequence in many 

centers, offering economic advantages as well. The latest Network Template Perturbation (NTP) methods [20] have facilitated the 

construction of structural covariance networks. The predictive potential of brain networks for long-term motor outcomes, investigated in 

fMRI research, may also be attainable by depicting brain networks using structural covariance. 

In previous studies, the relationship between T1-based brain morphometry and long-term therapeutic outcomes has been established 

[21]. Gray matter atrophy in the frontal lobe [22] and precentral cortex [23] have also shown effective predictive relationships with long-

term motor response.  Additionally, in PD patients, damage to the structural covariance network (SCN) from the basal ganglia to regions 

such as the sensorimotor cortex has been observed based on T1-weighted images at the group level[24, 25]. However, group-based SCNs 

often overlook individual differences and fail to uncover the relationship between brain structural networks arising from individual 

variability and improvements in clinical symptoms. In this study, we employed NTP, based on T1, to construct individualized structural 

covariance networks (ISCN) and investigate the predictive value of ISCN for long-term motor improvement following STN-DBS [20]. 

This approach allowed us to explore the heterogeneity of structural covariance networks at the individual level.  

In this study, the network edge selection was determined based on correlations with long-term prognosis and between-group 

comparisons. Graph theory analysis was utilized to identify nodes in the network crucial for long-term outcome. Ultimately, machine 

learning (ML) techniques were employed to predict the extent of motor improvement in PD patients after STN-DBS. 

 

MATERIALS AND METHODS 
Study Design and Participants 

The study retrospectively included patients from 2016 to 2022 at Beijing Tiantan Hospital, Capital Medical University, China. Inclusion 

criteria are: (1) diagnosed with idiopathic PD [26]; (2) patients underwent bilateral STN-DBS; (3) completing motor and non-motor 

assessments at baseline and at least 1 year post-surgery; (4) meeting quality control standards on neuroimaging examination. Age matched 

HCs were individuals aged between 40-80 years without any neurological disorders. Ultimately, a total of 138 PD patients were 

retrospectively included, with 40 HCs. Baseline information is summarized in Table 1. 

 

Clinical Examinations 

Detailed clinical assessments included Movement Disorder Society-sponsored Unified Parkinson's Disease Rating Scale (MDS-UPDRS), 

Berg balance scale (Berg) and freezing of gait questionnaire (FOG-Q), Montreal cognitive assessment (MoCA), Hamilton Anxiety Rating 

Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). These clinical assessments were conducted by two movement disorder 

experts within the first two weeks preceding DBS, during both the medication-off (Med-OFF) and medication-on (Med-ON) states. The 

Med-OFF state was defined as abstaining from antiparkinsonian drugs for at least 12 hours, while the Med-ON state was defined as having 

taken antiparkinsonian drugs for at least 1 hour. The levodopa equivalent daily dose (LEDD) for each patient's antiparkinsonian drugs is 

detailed in Table 1 [27]. Follow-up assessments were conducted at 1-3 years post-surgery in both stimulation-on (Stim-ON)/Med-ON and 

Stim-ON/Med-OFF states. The specific surgical procedure and follow-up protocol can be found in the supplementary materials. 

The impact of DBS on clinical motor improvement was quantified as a percentage improvement on the MDS-UPDRS-III. MDS-

UPDRS-III consists of 33 scores derived from 18 items, with each item scored on a scale of 0 to 4. A score of 0 indicates normalcy, while 

a score of 4 signifies severe impairment [28]. The improvement percentage of DBS was further used to categorize patients into good 

improvement group (GIG) and moderate improvement groups (MIG). The formula for calculating the improvement percentage is as 

follows:  

(preoperative UPDRS_III(Med OFF) −  postoperative UPDRS_III( Med OFF/Stim ON)/ preoperative UPDRS_III( Med OFF)) 

Previous studies have indicated that patients undergoing STN-DBS with an improvement rate exceeding 30% are considered to exhibit 

a beneficial response to stimulation [11]. Therefore, we defined the MIG as patients with an improvement rate of 30% or less. Additionally, 
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the confidence interval for the overall maximum improvement in UPDRS ranges from 69.8 to 45.8 [29]. Therefore, patients with an 

improvement rate of 70% or higher were categorized as the GIG. In the group analysis, only patients with DBS improvement rates below 

30% and above 70% were included. This was done to enhance sensitivity in the analysis. Detailed information on patient grouping based 

on DBS improvement rates is shown in Figure 2 and Table S1. 

All post-operative images of the patients were reviewed to confirm the absence of electrode displacement. The final follow-up 

stimulation parameters for both patient groups were comparable (Table S2 and S3). 

 

Individual Differential Structural Covariance Network (IDSCN) Measures 

As the conventional group-level SCN analysis tends to lose individualized network information, we adopted a recently established method, 

NTP, as outlined by Liu, Z et al [20], to construct individual-specific SCN networks. Details of T1 data acquisition and preprocessing can 

be found in the supplementary materials. 

Specifically, we followed the steps depicted in Figure 1. Initially, a reference SCN was constructed within the HC group (n = 40). This 

network was generated by calculating the partial Pearson correlation coefficient (PCC) between gray matter volumes of each pair of brain 

regions, while considering total intracranial volume (TIV) as a covariate and denoted as PCCn. Subsequently, every patient was introduced 

into the HC group, resulting in n + 1 subjects (n controls and 1 patient), and a new structural covariance network termed the perturbed 

network PCCn+1 was constructed. Calculation of the difference between the perturbed network and the reference network, ΔPCCn = 

PCCn+1 – PCCn, followed. Lastly, given that ΔPCCn exhibited a novel symmetrical distribution known as the "volcano distribution" [30], 

we computed the Z-score for ΔPCCn using a Z-test as followed: 

𝑍 =  
Δ𝑃𝐶𝐶𝑛

1−𝑃𝐶𝐶𝑛
2

𝑛−1

  

The IDSCN network for every patient was subsequently constructed, where the weight of each edge was determined by the Z-scores 

obtained from the Z-test. Moreover, we calculated the P value for each edge in the IDSCN network for every patient based on the Z-score. 

Finally, we identified edges in each patient's IDSCN that significantly deviated from the reference network, applying Bonferroni correction. 

The edges within the IDSCN convey how the inclusion of an additional patient altered the covariance of gray-matter volume pairs for 

specific brain regions compared to the reference group. Ultimately, for each patient, we constructed IDSCN consisting of 12,090 edges, 

based on 156 brain regions defined by the AAL3 atlas (Table S4). The edges in the IDSCN represent how the covariance between two 

brain regions in an individual patient deviates from the reference structural covariance network observed in HCs. 

 

Network analysis 

We selected a range of sparsity thresholds (K = 0.14 ~ 0.5, with an increment of 0.01) to binarize the IDSCN and computed global and 

nodal network topological properties. Global metrics (small-world attributes and global efficiency) and node-level metrics (degree 

centrality, local efficiency) were computed were calculated using the GRETNA software package [31]. Definition of graph theory metrics 

can be found in supplementary materials. 

For each sparsity threshold, network metrics were calculated, and quantitative analysis of graph theoretical metrics was performed by 

computing the Area Under the Curve (AUC) within the entire sparsity range.  

 

Patients splitting and Multi-Layer Perceptron classification 

We selected the top 5% of edges based on their Z-scores for subsequent analysis [20]. This approach was employed to ensure that such 

differences would not be confounded by an excessive number of nodes and edges in further inter-group analysis and predictive model 

construction. Firstly, we assessed whether there existed group-level differences in network properties, which could serve as indicators of 

long-term prognosis. We divided the dataset into training/validation (a set) and testing (b set) sets in a 7.5:2.5 ratio. Within a set, we ranked 

the edges based on their correlation with the DBS improvement and considered the absolute values. Additionally, covariates such as age, 

gender, Total Intracranial Volume (TIV), and MoCA scores were taken into account. We selected the top 1% of the correlated edges from 

a set, resulting in six edges (n=6). Subsequently, we conducted group-wise comparisons between these six edges in the overall groups. 

Next, we employed a Multi-Layer Perceptron Classifier (neural network) with default parameters from scikit-learn on the top 1% 

correlated edges in a set [32]. This evaluation aimed to assess the model's ability to differentiate the responsiveness to STN-DBS based on 

combinations of network edges. We performed 5-fold cross-validation on a set to test the model's performance. Finally, the model was 

evaluated on b set. This involved generating Receiver Operating Characteristic (ROC) curves on b set, plotting the True Positive Rate 

(TPR) against the False Positive Rate (FPR). The performance of the tested model was quantified by calculating the AUC of the average 

ROC curve. 

 

STN-DBS outcome prediction using XGBoost 

We utilized XGBoost to investigate whether preoperative network fingerprints can predict the long-term DBS efficacy for all patients. 

Initially, we divided the dataset into training/validation and testing sets in a 75%:25% ratio, followed by feature selection within the 

training/validation set where we chose the top 1% of edges. Subsequently, data standardization was performed. Through grid search, we 

determined the optimal hyperparameter combination for the XGBoost regression model, including n_estimators (the number of base 

learners) and learning_rate (the weight shrinkage of each base learner). During the hyperparameter search, we experimented with different 

values to find the best combination. For n_estimators, we explored a range from 10 to 200, while for learning_rate, we explored a range 

from 0.01 to 0.1. 
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Following this, we trained the XGBoost regression model on the training dataset using the best hyperparameter combination and 

evaluated its performance through five-fold cross-validation on the training/validation dataset to assess hyperparameter performance. 

Subsequently, we assessed the model's performance by predicting long-term DBS improvement on the testing dataset. To compute feature 

importance, we utilized the built-in feature_importances attribute of the XGBoost library, providing the relative importance of each feature 

in predicting the model. Evaluation metrics included the correlation coefficient between predicted and actual values, offering insights into 

the model's predictive accuracy. Additionally, we computed the mean squared error (MSE) as a quantifiable measure of overall prediction 

error. 

 

Statistical Analyses 

The comparison of changes in outcomes from baseline to long-term follow-up for all patients, which did not conform to a normal 

distribution, was assessed using Wilcoxon signed-rank tests.  Following grouping into GIG, MIG, and HC, an analysis of variance 

(ANOVA) was employed to examine age and gender differences among the groups. Comparisons between the GIG and MIG groups 

underwent a normality test, and if the data followed a normal distribution, a two-sample t-test was applied. Non-normally distributed data 

were analyzed using Mann-Whitney U-tests. All results are presented as mean ± standard deviation, and statistical significance was defined 

as p<0.05. 

Inter-group differences in gray matter network connectivity were evaluated using ANCOVA tests, with age, gender, TIV, and MoCA 

scores as covariates. Multiple comparisons were corrected using the False Discovery Rate (FDR), and FDR-adjusted p-values (FDR p) 

below 0.05 were considered statistically significant. The correlation between gray matter volume network edges and long-term 

improvement in DBS was assessed using Partial correlation analysis with age, gender, TIV, and MoCA scores as covariates. 

 

RESULTS 
Clinical characteristics 

40 HCs and 138 PD patients with complete long-term follow-up assessments were screened for inclusion. The median follow-up time was 

3 years (confidence interval 2.78-3.11). The average age of PD patients was 62.08 ± 8.52 years, with an average disease duration of 11.72 

± 4.73 years. 

PD patients exhibited a significant reduction in MDS-UPDRS-III scores, decreasing from an average of 49.86 to 24.61 following long-

term STN-DBS (P<0.001). Furthermore, tremor and rigidity scores showed significant improvement (P<0.001). Other results can be found 

in Table 1. 

As indicated in Table S2, there were no significant differences observed among the GIG, MIG, and HC groups in terms of age (P = 

0.768) and gender (P = 0.327). Additionally, there were no significant differences between the two patient groups in terms of UPDRS 

improvement rates during preoperative levodopa responsiveness testing (P = 0.854) and disease duration (P = 0.452). The long-term 

therapeutic effects on both motor and non-motor symptoms for the two patient groups are presented in Figure 2. Patients in the GIG who 

exhibited significant improvement in UPDRS-III scores also demonstrated more pronounced improvements in HAMA, Berg, and FOG-

Q. 

 

Preoperative Grey Matter and Network Fingerprints 

The volume of gray matter did not exhibit significant differences between the two groups. In comparison to the GIG group, the MIG group 

showed significantly increased connectivity Z-scores for the connection between the left Middle Frontal Gyrus (Frontal_Mid_2_L) and 

the left Caudate nucleus (Caudate_L) (FDR p = 0.013), the right Olfactory Cortex (Olfactory_R) and the right Insula (Insula_R) (FDR p 

= 0.020), the left Superior Medial Frontal Gyrus (Frontal_Sup_Medial_L) and Insula_R (FDR p = 0.020), the right Superior Frontal Gyrus 

(Frontal_Sup_2_R) and the left Paracentral Lobule (Paracentral_Lobule_L) (FDR p = 0.009), the right Middle Frontal Gyrus 

(Frontal_Mid_2_R) and the right Crus II of the Cerebellum (Cerebellum_Crus2_R) (FDR p = 0.009), and the left Lobule VIIb of the 

Cerebellum (Cerebellum_7b_L) and the vermis of the Cerebellum (Vermis_6) (FDR p = FDR p = 0.009). Detailed results are shown in 

Figure 3. 

Post-operative images of both patient groups were examined, and no electrode displacement was observed. No significant differences 

in stimulation parameters were found between the two groups (Table 3). The six edges demonstrated good predictive capabilities for long-

term efficacy, achieving a maximum AUC area of 0.802 when employing the Multi-Layer Perceptron Classifier (Fig 3B). 

 

Relationship of Network Topologies and DBS Outcomes 

We found that global properties showed no significant correlation with long-term DBS outcomes. However, degree centrality and local 

efficiency exhibited significant correlations with long-term DBS prognosis. The degree centrality of the right Middle Cingulate Cortex 

(rMCC) (FDR p = 0.015), left Parahippocampal Gyrus (lPHG) (FDR p = 0.025), right Postcentral Gyrus (rPoCG) (FDR p = 0.034), and 

Vermis 4-5 (VER4_5) (FDR p = 0.011) demonstrated a positive correlation with long-term DBS improvement. Additionally, among the 

local efficiency, the left Parahippocampal Gyrus (lPHG) (P = 0.048), right Parahippocampal Gyrus (rPHG) (P = 0.040), right Postcentral 

Gyrus (rPoCG) (P = 0.024), left Supramarginal Gyrus (lSMG) (P = 0.030), and left Lobule 3 of the Cerebellum (lCER3) (P = 0.033) 

exhibited positive correlations with long-term prognosis. Detailed results are presented in Figure 4, Table S5, and S6. 

 

Predictors of STN-DBS Responsiveness 
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When age, gender, TIV were considered as covariates, the correlations between the top 1% ranked network edges and DBS improvement 

rates are depicted in Figure 5. When testing the predictive performance of gray matter volume Network Fingerprints for long-term efficacy 

using XGBoost in the test dataset, the correlation between actual values and predicted values was 0.671, with an MSE of 0.055, showed 

in Figure 5B. The most significant contribution is represented by edge 'Frontal_Sup_Medial_L' and 'Insula_R' (0.428). 

 

DISCUSSION 

This study investigated the impact of STN-DBS on long-term motor improvement in PD patients. The observation revealed that patients 

with more favorable DBS improvement displayed IDSCN characteristics and network topological attributes that closely resembled those 

of healthy individuals. Additionally, potential outcome predictors were examined, revealing that IDSCN fingerprints could predict the 

long-term improvement outcomes of DBS. 

The absence of a significant difference in preoperative levodopa responsiveness between the GIG and MIG groups validates previous 

findings that levodopa responsiveness alone is not a reliable predictor of long-term DBS outcomes [7, 33]. We did not observe significant 

differences between the two patient groups in terms of stimulation parameters, despite it being recognized as important determinants of 

long-term postoperative efficacy [34]. During the chronic DBS phase following multiple programming adjustments, suboptimal outcomes 

were still evident in some late-stage PD patients [35]. This underscores the substantial challenge of accurately selecting appropriate 

candidates for DBS therapy [36]. Intriguingly, we did not detect differences in gray matter volume within individual brain regions between 

the two patient groups; rather, differences were observed exclusively within the gray matter network. This suggests that long-term efficacy 

in these patients may be more influenced by network characteristics rather than structural abnormalities within isolated brain regions.  

The correlation analysis between the topological properties and long-term clinical outcomes revealed that parahippocampal area, 

postcentral gyrus, and supramarginal gyrus, as well as the cerebellum, exhibited nodal local efficiency and degree centrality positively 

corelated with improved long-term outcomes. These regions are implicated in spatial cognition and motor coordination [37], with previous 

cortical structural studies reporting atrophy in these areas among PD patients [38]. While we did not validate our findings with an external 

dataset, our results align with previous research, particularly in the comparison of PD to HC. PD patients exhibit a disrupted topological 

organization of cortical morphological networks with a significant decline in local efficiency [39]. Our results suggest a network with 

greater structural integration and reduced isolation, might be more susceptible to modulation by DBS. This observation aligns with previous 

research findings that indicate DBS exerts widespread regulatory effects on functional connectivity within cortical regions [15].  

Notably, the abnormal motor-cognitive gray matter network fingerprint identified in this study may serve as one of the key explanations 

for the observed long-term efficacy disparities. These network aberrations primarily stem from reconfigurations within the motor-cognitive 

network, such as alterations between the frontal cortex and cerebellum, the caudate nucleus, as well as the frontal cortex and the paracentral 

lobule (PCL). The role of frontal lobe function and structural abnormalities in influencing the long-term motor efficacy of DBS stimulation 

has been elucidated in PD patients [3, 22, 40]. The cerebellum-basal ganglia-frontal network aberrations play a pivotal role in the motor 

coordination and control deficits observed in PD patients [41]. The frontal cortical function may deteriorate in response to high-frequency 

STN-DBS stimulation, exacerbating patients' motor coordination and cognitive abilities [42]. Our research findings indicate that structural 

co-variation connections between the cerebellum, frontal cortex, and caudate nucleus have predictive value for the motor outcomes of 

DBS, providing evidence for the necessity of higher-level cognitive network control in motor coordination. Indeed, as demonstrated by 

some studies, PD patients with more severe caudate nucleus damage [43] and lower frontal lobe scores [3] tend to exhibit poorer long-

term motor prognosis. 

To date, despite an abundance of studies elucidating potential determinants of long-term outcomes following DBS, the majority of 

investigations have centered around preoperative assessments, such as gait scores [44], postural stability [35], and frontal scores [3]. 

However, these scales required substantial time and personnel, and their susceptibility to the vagaries of subjective assessments by 

clinicians and the influence of patients' anxious states in the clinical setting [45]. In contrast, the motor-cognitive gray matter network 

fingerprint remains impervious to emotional factors and variations in the expertise of clinicians. In a broader context, the characteristics 

of the preoperative motor-cognitive gray matter network fingerprint may be indicative of specific cerebral behavior patterns in patients 

with PD.  

This study has several limitations, including the fact that our evaluation was focused on overall long-term motor improvement, and we 

did not assess issues such as posture, gait, and articulation disturbances following long-term stimulation  [46, 47]. It is also restricted by 

its retrospective, single-center design, meaning we only have MRI from our center. This limitation makes it difficult for us to validate our 

findings across multiple centers or use different types of scanning devices. Additionally, conducting repeated scans on patients using the 

same device to confirm the stability of the results is also challenging due to the retrospective nature of this study. Finally, due to limitations 

in sample size, we were unable to conduct comparisons between subtypes, and the grouping method employed was somewhat broad to 

enhance statistical sensitivity. 

 

CONCLUSIONS 

In conclusion, our findings suggest a potential correlation between individual structural covariance network fingerprints in PD patients 

and long-term motor outcomes following STN-DBS. However, it is important to interpret these results cautiously, as further validation 

and larger-scale multi-center studies are needed to confirm the robustness and generalizability of this observed association. The integrity 

of network topology, along with disruptions in network separations, is closely intertwined with long-term motor prognosis. Furthermore, 

we have identified that continuous and binary structural covariation network connections between the cerebellum, basal ganglia, frontal 

cortex and PCL can predict the motor improvement associated with STN-DBS at the individual patient level. The weighted T1 measure, 
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apart from serving as a necessary tool for preoperative localization, holds promise as a valuable biomarker for preoperative assessment of 

DBS candidates based on their individual structural covariation network fingerprints. 
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Table 1: Baseline and Follow-up 
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 Preoperate 

Mean±SD (range) 

Postoperate 

Mean±SD (range) 

p 

Sex (M/F) 73/65 73/65 - 

Age (years) 62.08±8.52 (35-82) 62.08±8.52 (35-82) - 

Durations (years) 11.72±4.73 (5-29) 11.72±4.73 (5-29) - 

LEDD (mg) 773.37±351.27 (0-1735.65) 555.66±291.21 (0-1580) <0.001 

MDS-UPDRS-III (med off) 49.86±16.00 (18-97) 24.61±13.49 (3-65) <0.001 

MDS-UPDRS-III-tremor (med 

off) 

10.95±7.68 (0-33) 3.33±4.35 (0-22) <0.001 

MDS-UPDRS-III-rigidity (med 

off) 

8.78±3.67 (2-23) 2.75±2.92 (0-12) <0.001 

FOGQ 11.58±8.22 (0-24) 7.54±7.47 (0-24) <0.001 

Berg 37.62±13.36 (1-56) 45.84±10.21 (2-56) <0.001 

MoCA 21.82±4.22 (10-30) 21.90±4.39 (10-30) 0.564 

HAMA 18.41±9.53 (2-51) 12.31±8.57 (0-44) <0.001 

HAMD 18.25±9.18 (1-58) 13.85±10.15 (0-55) <0.001 

Outcome changes from baseline to follow-up of each group were tested using Wilcoxon signed-rank tests. MDS-UPDRS: Movement 

Disorder Society-sponsored Unified Parkinson's Disease Rating Scale; Berg: Berg balance scale; FOG-Q: freezing of gait 

questionnaire; MoCA: cognitive assessments using the Montreal cognitive assessment; HAMA: Hamilton Anxiety Rating Scale; HAMD: 

Hamilton Depression Rating Scale. 
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Figure 1: Schematic outline of the study. A: Gray matter volumes were computed using the CAT12 toolbox, and gray matter 

volumes were extracted based on the AAL3 atlas for all HC and PD patients. B: Individual structural covariance network 

computation process for patients. PCC: Pearson correlation coefficient; HC: Health Controls; PD: Parkinson's disease. 

 

Figure 2: Clinical Improvement: A, B: Differences in preoperative and long-term postoperative scores for motor and non-

motor scales in patients with DBS improvement rates in the GIG (A) and MIG (B). Paired t-tests were conducted for data passed 

the normality test, while the Wilcoxon signed-rank test was used for data did not meet the normality assumption. C: 

Comparison of the improvement rates in motor and non-motor symptoms between the GIG and MIG. For normally distributed 

data, a two-sample t-test was employed, whereas the Wilcoxon rank-sum test was used for data that did not meet the 

normality assumption. GIG: good improvement group; MIG: moderate improvement group. 

 

 

Figure 3: Inter-group Differences in Edges and Prediction: A Comparison of inter-group differences in edges between the GIG 

(blue) and MIG (red) patient groups for edges that are correlated with DBS improvement rate and ranked in the top 1%. Age, 

gender, TIV, and MoCA were included as covariates. FDR correction, significant inter-group differences are found in all six 

edges.  B: Prediction of Long-Term Improvement Groups in Patients Using 6 Edge Features. TIV: Total Intracranial Volume; 

MoCA: Montreal Cognitive Assessment; FDR: Following False Discovery Rate; GIG: good improvement group; MIG: moderate 

improvement group. 
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Figure 4: The Relationship Between Graph Theory Metrics and Long-Term Treatment Outcomes. Red spherical nodes 

represent brain regions with P-values corrected for false discovery rate (FDR) below 0.05. A: Degree centrality of nodes that 

correlated with long-term motor prognosis. B: Local efficiency of nodes that correlated with long-term motor prognosis. 
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Figure 5: Individual Structural Covariance Networks for Predicting Long-Term Treatment Outcomes. A: six edges of 

correlations with DBS improvement rates, with age, gender, and TIV as covariates. B: Weights of the six edges in predicting 

long-term DBS improvement rates using the XGBoost model. C: Correlation between the actual and predicted values of long-

term DBS improvement rates for the six edges using the XGBoost model. 

 

SUPPLEMENTAL FILES 

STN‐DBS surgery and follow-up protocol 

The standard procedure for DBS was performed as previously reported [48]. All patients received bilateral electrode implantation into the 

STN using either model 3389 electrodes (Medtronic, USA) or model L301 electrodes (Pins Medical, China). In brief, electrode 

implantation was conducted under local anesthesia with the guidance of a Leksell micro-stereotactic system (Elekta Instrument AB, 

Stockholm, Sweden). Intraoperative microelectrode recording and macro-stimulation tests were conducted for trajectory selection. 

Subsequently, an implantable pulse generator (IPG) connected to the electrodes was implanted in the subclavicular area under general 

anesthesia. Electrode placement was confirmed through CT scanning or lead reconstruction. 

At follow-up stage, patients returned to the hospital for programming to adjust stimulation parameters based on clinical symptoms. 

Following a 3-7 days observation period (depending on the patient's schedule), patients were then referred to the assessment center for 

evaluations. Med-OFF assessments were conducted after at least 12 hours of medication withdrawal, and Med-ON assessments were 

performed approximately 1 hour after medication intake. All assessments were recorded with the consent of the patients. 

 

T1 data acquisition and preprocessing 

All participants underwent scanning using a 3T MRI system (Siemens Medical Systems) equipped with a 32-channel head coil. Head 

immobilization was achieved using head cushions to ensure accuracy during imaging. A whole-head three-dimensional sagittal T1-

weighted 3D magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence was employed with the following parameters: 

repetition time, 1.56 ms; echo time, 0.00169 ms; flip angle, 8°; matrix size, 256 × 256; isotropic voxel size, 1 × 1 × 1 mm³; and 196 slices 

were acquired. 

T1-weighted structural data were subjected to voxel-based morphometric preprocessing using CAT12 

(http://dbm.neuro.unijena.de/cat). The preprocessing steps closely followed those outlined in Liu's study [20] which included: (1) the T1-

weighted images underwent segmentation into GM, white matter (WM), and non-brain voxels (cerebrospinal fluid, skull) using the “new-

segment” routine. (2) Population templates for GM and WM were generated from each dataset using the DARTEL algorithm. (3) The 

gray-matter images were aligned to a nonlinear deformation field and normalized to MNI space. (4) extraction of gray matter volumes 

based on the AAL3 atlas. Data quality checks using CAT12, we ensured that data from 138 patients and 40 HC all met the criterion of a 

weighted average (interquartile range, IQR) above 75%. Additionally, a check of the data confirmed its overall integrity and absence of 

anomalies. Due to the low variance of voxels with low gray matter values, rendering them unsuitable for Gaussian error distribution, we 

applied a masking procedure using the SPM toolbox (http://www0.cs.ucl.ac.uk/staff/g.ridgway/masking/) and set the threshold at 0.2 [20]. 

The AAL3 atlas divided the brain into 170 regions of interest (85 in each hemisphere) for identifying brain regions [49]. Brain regions 

composed of voxels with excessively low gray matter volumes were excluded. Ultimately, 156 brain regions were included in the study, 

and the specific regions included are detailed in Table S4.  

 

Definition of Graph Theory Metrics 

Small-World Attributes: A network is considered a small-world network when it exhibits high clustering (like regular networks) and short 

average path lengths (like random networks). This combination allows for efficient local and global information transfer. 

Global Efficiency: Global efficiency measures how well information is exchanged across the entire network. It is calculated as the average 

inverse shortest path length between all pairs of nodes in the network. 

Degree Centrality: Degree centrality of a node is the number of edges connected to that node. Nodes with higher degree centrality are more 

central to the network structure and are often considered more influential. 

Local Efficiency: Local efficiency measures the efficiency of information exchange within the immediate neighborhood of a node. It is 

defined as the inverse of the shortest path length (number of steps, or links, between network nodes) between connected nodes that are 

neighbors with the node of interest. 

 

  

http://www0.cs.ucl.ac.uk/staff/g.ridgway/masking/
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Table S1.  Long-Term Follow-Up Improvement Percentage in GIG and MIG 

 GIG MIG HC P 

Gender (M/F) 16/18 15/19 21/19 0.768 

Age (years) 60.29±8.19 62.21±7.75 60.83±6.14 0.327 

Durations (years) 11.32±3.74 12.18±5.41  0.452 

Levodopa 

Responsiveness 

0.56±0.23 0.56±0.19  0.854b 

MDS-UPDRS-III 0.79±0.07 0.16±0.11  <0.001 

MDS-UPDRS-III-tremor  0.85±0.27 0.29±0.71  0.001 

MDS-UPDRS-III-rigidity  0.87±0.20 0.34±0.46  <0.001 

FOGQ 0.33±0.76 0.15±0.62  0.107 

Berg 0.24±0.49 0.07±0.49  0.082 

MoCA 0.06±0.27 -0.02±0.45  0.803 

HAMA 0.39±0.49 0.16±0.58  0.085 

HAMD 0.29±0.47 0.13±0.63  0.390 

Age and gender among three groups using a one-way analysis of variance (ANOVA). All results are presented as mean ± standard deviation. 

Comparisons between the GIG and MIG groups were subjected to a normality test, and for data following a normal distribution, a two-

sample t-test (denoted as 'b') was employed. Non-normally distributed data were analyzed using Mann-Whitney U-tests. GIG: good 

improvement group; MIG: moderate improvement group; HC: health controls; MDS-UPDRS: Movement Disorder Society-sponsored Unified 

Parkinson's Disease Rating Scale; Berg: Berg balance scale; FOG-Q: freezing of gait questionnaire; MoCA: cognitive assessments using the 

Montreal cognitive assessment; HAMA: Hamilton Anxiety Rating Scale; HAMD: Hamilton Depression Rating Scale. 
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Table S2. Programming parameters between groups 

 MIG GIG  

 L R L R P 

Voltage 2.57±0.56 2.56±0.56 2.51±0.63 2.55±0.58 0.605 

Frequency 135.79±24.06 134.71±24.64 0.868b 

Pulse Width 75.59±11.33 77.06±14.04 74.41±13.30 75.29±13.31 0.578 

The frequencies for the two patient groups were compared using the Mann-Whitney U test, and the results were denoted as "b." Voltage 

and pulse width were analyzed using one-way ANOVA to assess whether there were any differences between the left and right sides for 

both groups of patients. All results are presented as mean ± standard deviation. GIG: good improvement group; MIG: moderate 

improvement group; L: left limbs; R: right limbs. 

 

 

Table S3. The programming of every patient 

Group L R  

  PW F Vol  PW F Vol  

MIG C+2- 80 185 3.2 C+9- 130 185 3.5 Medtronic 

MIG C+1- 80 137 2.7 C+7- 70 137 2.55 Pins 

MIG C+1- 60 135 1 C+10- 70 135 1.6 Medtronic 

MIG C+2- 90 100 3.5 C+9-11- 100 100 3.5 Medtronic 

MIG 1+3- 70 125 1.95 C+7- 90 125 2.6 Pins 

MIG C+2- 70 140 3.05 C+11- 60 140 1.85 Medtronic 

MIG C+3- 80 80 3 C+6- 70 80 3 Pins 

MIG C+1- 90 100 2.85 C+9- 80 100 2.55 Medtronic 

MIG C+4- 60 160 2.6 C+8- 60 160 3 Pins 

MIG C+3- 80 155 2.5 C+8- 60 155 1.9 Pins 

MIG C+3- 70 135 2.7 C+7- 70 135 2.95 Pins 

MIG C+2- 60 135 1.9 C+6- 60 135 1.9 Pins 

MIG C+2- 60 140 2.7 C+6- 60 140 2.7 Pins 

MIG 4+1- 80 150 3 C+5- 70 150 2.6 Pins 

MIG C+2- 70 145 3 C+10- 80 145 3 Medtronic 

MIG C+3- 100 155 2.75 C+7- 80 155 2.4 Pins 

MIG C+1-2- 80 100 3.6 C+6-8- 80 100 3.9 Pins 

MIG C+2- 90 150 2.5 C+10- 90 150 2.5 Medtronic 

MIG C+2- 60 130 2.3 C+10- 70 130 1.5 Medtronic 

MIG 0+1- 80 140 2.7 0+9- 70 140 2.8 Medtronic 

MIG C+3- 90 135 3 C+6- 80 135 2.9 Pins 

MIG C+1- 80 160 2.45 C+9- 70 160 1.95 Medtronic 

MIG C+2-3- 90 165 3.15 C+6-7- 80 165 3.1 Pins 

MIG C+3- 70 150 2.3 C+10- 80 150 2.3 Medtronic 

MIG C+1- 90 90 2.7 C+10- 70 90 1.7 Medtronic 

MIG C+3- 70 90 2.3 C+11- 70 90 2.3 Medtronic 

MIG C+2- 90 140 3 C+10- 80 140 2.6 Medtronic 

MIG C+3- 60 160 1.5 C+7- 90 160 2.8 Pins 
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MIG C+1- 70 120 2.4 C+9- 90 120 3.3 Medtronic 

MIG C+4- 60 130 3 C+8- 60 130 2 Pins 

MIG C+3- 70 160 2 8+10- 90 160 2.5 Medtronic 

MIG C+3- 70 145 2.15 C+8- 80 145 2.6 Pins 

MIG C+2- 70 125 1.8 C+6- 80 125 2.5 Pins 

MIG C+2- 80 150 2 C+8- 80 150 2.3 Pins 

EIG C+2- 60 140 2.1 C+6- 60 140 2 Pins 

EIG C+3- 80 160 2.65 C+6-7- 60 160 3.3 Pins 

EIG C+2- 80 145 2.5 C+10- 80 145 2.3 Medtronic 

EIG C+2- 80 163 2.7 C+7- 90 163 2.85 Pins 

EIG C+1-3- 70 80 2.65 C+9-11- 70 80 2.65 Medtronic 

EIG C+2- 2.1 70 130 C+6- 2.15 70 130 Pins 

EIG C+3- 70 135 2.8 C+7- 70 135 2.8 Pins 

EIG C+2- 60 110 1.9 C+10- 60 110 1.9 Medtronic 

EIG 0+3- 70 140 1.7 0+9- 70 140 2.3 Medtronic 

EIG C+1- 110 90 3.2 C+9- 100 90 3.5 Medtronic 

EIG C+3- 60 140 2 C+7- 70 140 2.7 Pins 

EIG C+2- 70 90 2.9 C+10- 80 90 2.9 Medtronic 

EIG c+1-3- 80 155 2.4 C+11- 80 155 2.5 Medtronic 

EIG C+3-4- 60 130 1.5 C+8- 90 130 2.4 Pins 

EIG C+4- 60 130 1.55 C+8- 60 130 1.55 Pins 

EIG C+1- 100 95 3.15 C+10- 100 95 3.25 Medtronic 

EIG C+3- 60 160 2.4 C+7- 70 160 2.7 Pins 

EIG C+4- 100 160 3.5 C+7- 100 160 2.9 Pins 

EIG 0+2- 70 150 2.2 0+10- 60 150 2.15 Medtronic 

EIG C+1- 90 145 3.05 C+9- 80 145 1.8 Medtronic 

EIG C+2-3- 90 153 3.2 C+7-6- 90 153 3.2 Pins 

EIG C+1- 70 70 2.5 C+5- 70 70 2.6 Pins 

EIG C+2- 70 135 2.2 C+10- 70 135 1.9 Medtronic 

EIG C+3- 70 140 2.45 C+6- 70 140 2.45 Pins 

EIG C+3- 90 127 3.75 C+7- 80 127 3.75 Pins 

EIG C+3- 70 155 2.3 C+10- 100 155 2.8 Medtronic 

EIG C+1- 80 160 2.85 C+9- 80 160 2.75 Medtronic 

EIG C+3- 70 160 3.3 C+7- 60 160 2.3 Pins 

EIG C+2- 70 130 2.3 C+10- 60 130 1.7 Medtronic 

EIG C+3- 90 127 3.75 C+7- 80 127 3.75 Pins 

EIG C+2- 60 135 1.4 C+10- 60 135 1.8 Medtronic 

EIG C+2- 60 145 1.6 C+10- 70 145 2.2 Medtronic 

EIG C+2- 60 135 2 C+10- 60 135 2.1 Medtronic 

EIG C+2- 80 160 2.95 C+9-10- 90 160 3 Medtronic 

The provided information details the programmable contact points and parameters for two groups of patients. The final column contains 

manufacturer-specific data, as different manufacturers have varying configurations for these contact points. In the case of "Pins", the 

contact points are sequentially assigned as follows: left limbs (1-2-3-4) and right limbs (5-6-7-8). In contrast, for "Medtronic", the contact 

points are sequentially assigned as follows: left limbs (0-1-2-3) and right limbs (8-9-10-11). "C+" denotes stimulation of the overall 

circulatory system. 

 

Table S4. After excluding brain regions with predominantly zero gray matter volume, the remaining brain regions and their coordinates 

within the AAL3 atlas. 

Label Number  

 

'Precentral_L' 1 1 [-38.4302325581395,-7.46142938173568,49.1403857061826] 
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'Precentral_R' 2 2 [41.6008577343981,-10.0498373262348,50.3098195800059] 

'Frontal_Sup_2_L' 3 3 [-19.6679671457906,35.4552361396304,34.7373716632443] 

'Frontal_Sup_2_R' 4 4 [23.0513070620367,32.6927428794382,36.8437378072571] 

'Frontal_Mid_2_L' 5 5 [-35.0269580652319,32.3728644331041,29.4378744175727] 

'Frontal_Mid_2_R' 6 6 [39.2736625514403,32.3823045267490,28.8164609053498] 

'Frontal_Inf_Oper_L' 7 7 [-48.2957610789981,10.9913294797688,17.3015414258189] 

'Frontal_Inf_Oper_R' 8 8 [50.4270907791280,13.1754824874911,19.6958541815583] 

'Frontal_Inf_Tri_L' 9 9 [-45.3900751285093,28.1666666666667,12.0828390668248] 

'Frontal_Inf_Tri_R' 10 10 [50.5613668061367,28.4019060901906,12.3172942817294] 

'Frontal_Inf_Orb_2_L' 11 11 [-40.8734643734644,30.5565110565111,-8.57616707616708] 

'Frontal_Inf_Orb_2_R' 12 12 [46.3260869565218,32.9187643020595,-8.48855835240275] 

'Rolandic_Oper_L' 13 13 [-46.8785425101215,-10.2510121457490,12.1356275303644] 

'Rolandic_Oper_R' 14 14 [52.8816679188580,-8.03719008264463,12.8298271975958] 

'Supp_Motor_Area_L' 15 15 [-5.19073125291104,3.05006986492779,59.5642757335818] 

'Supp_Motor_Area_R' 16 16 [8.74630957401941,-1.59320961619569,60.0128637705610] 

'Olfactory_L' 17 17 [-7.36831359738669,13.5063291139240,-12.6047366271948] 

'Olfactory_R' 18 18 [10.6798072711345,14.1498028909330,-13.1686377573368] 

'Frontal_Sup_Medial_L' 19 19 [-4.67379679144385,47.3870320855615,29.1363636363636] 

'Frontal_Sup_Medial_R' 20 20 [9.25070290534208,49.0285848172446,28.4268978444236] 

'Frontal_Med_Orb_L' 21 21 [-4.93810848400557,52.0173852573018,-9.35674547983310] 

'Frontal_Med_Orb_R' 22 22 [8.33411214953271,49.9065420560748,-9.01635514018692] 

'Rectus_L' 23 23 [-4.94131455399061,35.2065727699531,-20.0680751173709] 

'Rectus_R' 24 24 [8.50268456375839,33.9510067114094,-19.9362416107383] 

'OFCmed_L' 25 25 [-13.7363636363636,35.1181818181818,-21.5836363636364] 

'OFCmed_R' 26 26 [16.9219001610306,36.5982286634461,-21.7592592592593] 

'OFCant_L' 27 27 [-24.5383747178330,46.2629796839729,-16.6128668171558] 

'OFCant_R' 28 28 [29.1018518518518,47.9629629629630,-16.6820987654321] 

'OFCpost_L' 29 29 [-28.1631393298060,22.9003527336861,-19.9955908289242] 

'OFCpost_R' 30 30 [33.5303030303030,24.3627450980392,-19.8868092691622] 

'OFClat_L' 31 31 [-42.0279187817259,39.3578680203046,-15.6167512690355] 

'OFClat_R' 32 32 [48.2553191489362,36.2234042553191,-16.7446808510638] 

'Insula_L' 33 33 [-34.9101184068891,4.94025834230357,1.67222820236813] 

'Insula_R' 34 34 [39.2220338983051,4.52033898305083,0.313559322033896] 

'Cingulate_Ant_L' 35  [0,0,0] 

'Cingulate_Ant_R' 36  [0,0,0] 

'Cingulate_Mid_L' 37 35 [-5.38253477588872,-16.6009788768676,39.7143225141680] 

'Cingulate_Mid_R' 38 36 [8.16409441670450,-10.6970040853382,37.9375851112120] 

'Cingulate_Post_L' 39 37 [-4.70518358531318,-44.6727861771058,22.7786177105832] 

'Cingulate_Post_R' 40 38 [7.67611940298508,-43.5865671641791,19.9716417910448] 

'Hippocampus_L' 41 39 [-24.7553648068670,-22.4635193133047,-11.8841201716738] 

'Hippocampus_R' 42 40 [29.4450317124736,-21.4915433403805,-12.0771670190275] 

'ParaHippocampal_L' 43 41 [-20.9928425357873,-17.7924335378323,-22.4182004089980] 

'ParaHippocampal_R' 44 42 [25.6484098939929,-16.8003533568905,-22.2438162544170] 

'Amygdala_L' 45 43 [-23.0090909090909,-2.44545454545455,-18.9545454545455] 

'Amygdala_R' 46 44 [27.5564516129032,-1.07258064516130,-19.3064516129032] 

'Calcarine_L' 47 45 [-6.98272807794508,-80.3210806023029,4.60363153232950] 

'Calcarine_R' 48 46 [16.2098334228909,-74.9492208490059,7.51934443847394] 

'Cuneus_L' 49 47 [-5.76429980276134,-81.8622616699540,25.4040105193951] 



 17 

 

'Cuneus_R' 50 48 [13.6896067415730,-81.0898876404494,26.3525280898876] 

'Lingual_L' 51 49 [-14.3582338902148,-69.3649164677804,-6.50763723150358] 

'Lingual_R' 52 50 [16.5773913043478,-68.6417391304348,-5.71565217391304] 

'Occipital_Sup_L' 53 51 [-16.2569546120059,-86.1105417276720,26.3535871156662] 

'Occipital_Sup_R' 54 52 [24.4631988676575,-82.7066525123850,28.7653927813164] 

'Occipital_Mid_L' 55 53 [-32.1486983154671,-82.4877488514548,14.3024502297090] 

'Occipital_Mid_R' 56 54 [37.6277407054338,-81.4933269780744,17.5676835081030] 

'Occipital_Inf_L' 57 55 [-35.9824654622742,-80.0685441020191,-9.66471838469713] 

'Occipital_Inf_R' 58 56 [38.3705763397371,-83.6911021233569,-9.49292214357937] 

'Fusiform_L' 59 57 [-30.8893460372456,-41.8824166305760,-22.1093546990039] 

'Fusiform_R' 60 58 [34.1592533756950,-40.6985702938840,-22.0337569499603] 

'Postcentral_L' 61 59 [-42.4044193216855,-24.2754367934224,46.9568345323741] 

'Postcentral_R' 62 60 [41.6582526811405,-27.2726916034528,50.7539890138635] 

'Parietal_Sup_L' 63 61 [-23.2133171912833,-61.3077481840194,57.1571428571428] 

'Parietal_Sup_R' 64 62 [26.3424842484248,-60.9284428442844,60.2137713771377] 

'Parietal_Inf_L' 65 63 [-42.6066612178177,-47.5192071924806,44.9229668982428] 

'Parietal_Inf_R' 66 64 [46.7914498141264,-48.0881040892193,47.6918215613383] 

'SupraMarginal_L' 67 65 [-55.6464968152866,-35.4363057324841,28.6194267515924] 

'SupraMarginal_R' 68 66 [57.7624113475177,-33.3176291793313,32.6347517730496] 

'Angular_L' 69 67 [-43.9347826086957,-62.5818414322251,33.7830349531117] 

'Angular_R' 70 68 [45.7283105022831,-61.7385844748858,36.8150684931507] 

'Precuneus_L' 71 69 [-7.09070294784580,-57.8248299319728,46.1400226757370] 

'Precuneus_R' 72 70 [10.1888208269525,-57.8139356814701,41.8607963246554] 

'Paracentral_Lobule_L' 73 71 [-7.47479614529281,-27.1508524833210,68.1923647146034] 

'Paracentral_Lobule_R' 74 72 [7.62679425837321,-33.4425837320574,66.2918660287081] 

'Caudate_L' 75 73 [-12.1713430012610,8.56084489281210,10.6568411097100] 

'Caudate_R' 76 74 [15.7480949589684,10.0067409144197,10.0822098475967] 

'Putamen_L' 77 75 [-23.8852767666625,2.00476967490900,0.702146353709054] 

'Putamen_R' 78 76 [28.0055300623603,3.16637251441347,0.707612660312975] 

'Pallidum_L' 79 77 [-17.5614334470990,-1.85836177474403,-1.54436860068259] 

'Pallidum_R' 80 78 [21.4214285714286,-1.55714285714286,-1.58571428571429] 

'Thalamus_L' 81 79 [-41.8466666666667,-20.5355555555556,8.17555555555556] 

'Thalamus_R' 82 80 [46.3795180722892,-18.6445783132530,8.54417670682732] 

'Heschl_L' 83  [0,0,0] 

'Heschl_R' 84  [0,0,0] 

'Temporal_Sup_L' 85 81 [-52.9355400696864,-22.5095818815331,5.34059233449477] 

'Temporal_Sup_R' 86 82 [58.3325374084687,-23.5105062082139,4.91865647882840] 

'Temporal_Pole_Sup_L' 87 83 [-39.6540856031128,13.3677042801556,-21.9365758754864] 

'Temporal_Pole_Sup_R' 88 84 [48.4372197309417,12.9573991031390,-18.6898355754858] 

'Temporal_Mid_L' 89 85 [-55.3688789963578,-35.4842169162283,-4.08478348846622] 

'Temporal_Mid_R' 90 86 [57.6599002041279,-39.0656611476525,-3.27523247902019] 

'Temporal_Pole_Mid_L' 91 87 [-36.2443708609272,12.8006622516556,-35.8668874172185] 

'Temporal_Pole_Mid_R' 92 88 [44.5404380791912,12.7468407750632,-34.0181128896377] 

'Temporal_Inf_L' 93 89 [-49.5362500000000,-29.7918750000000,-25.0193750000000] 

'Temporal_Inf_R' 94 90 [53.8820635366882,-32.6388810795614,-24.2306719145347] 

'Cerebellum_Crus1_L' 95 91 [-34.8853246254322,-68.4431425278525,-30.7627737226277] 

'Cerebellum_Crus1_R' 96 92 [38.7145015105740,-68.8716012084592,-31.3496978851964] 

'Cerebellum_Crus2_L' 97 93 [-27.2687434002112,-75.0797254487856,-39.9435058078142] 
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'Cerebellum_Crus2_R' 98 94 [33.1735947094946,-70.8967879074162,-41.7017005196032] 

'Cerebellum_3_L' 99 95 [-7.61764705882354,-38.8676470588235,-20.2794117647059] 

'Cerebellum_3_R' 100 96 [13.5628019323672,-36.2101449275362,-21.0990338164251] 

'Cerebellum_4_5_L' 101 97 [-13.8431111111111,-45.1631111111111,-18.7613333333333] 

'Cerebellum_4_5_R' 102 98 [18.3885017421603,-44.6649245063879,-19.8542392566783] 

'Cerebellum_6_L' 103 99 [-22.0253837072019,-60.7585596221960,-23.9805194805195] 

'Cerebellum_6_R' 104 100 [25.9295264623955,-60.0376044568245,-25.4403899721449] 

'Cerebellum_7b_L' 105 101 [-31.0897435897436,-61.5495726495727,-47.2521367521368] 

'Cerebellum_7b_R' 106 102 [34.4288389513109,-64.9082397003745,-50.2602996254682] 

'Cerebellum_8_L' 107 103 [-24.5291467938527,-56.2710651828299,-49.5545839957605] 

'Cerebellum_8_R' 108 104 [26.2729636048527,-58.1308492201040,-51.2980935875217] 

'Cerebellum_9_L' 109 105 [-9.75316455696202,-50.6887226697353,-47.7359033371692] 

'Cerebellum_9_R' 110 106 [10.6903584672435,-51.2515451174289,-48.1242274412855] 

'Cerebellum_10_L' 111 107 [-21.2916666666667,-35.5000000000000,-43.5694444444444] 

'Cerebellum_10_R' 112 108 [27.3050314465409,-35.5188679245283,-43.1415094339623] 

'Vermis_1_2' 113 109 [1.96402877697842,-40.6786570743405,-21.8705035971223] 

'Vermis_3' 114 110 [2.55263157894737,-41.7894736842105,-13.2192982456140] 

'Vermis_4_5' 115 111 [2.33458646616542,-54.0939849624060,-7.90150375939849] 

'Vermis_6' 116 112 [2.26819407008087,-68.8504043126685,-16.8935309973046] 

'Vermis_7' 117 113 [2.36597938144330,-73.6958762886598,-26.8505154639175] 

'Vermis_8' 118 114 [2.31069958847736,-66.1543209876543,-35.8497942386831] 

'Vermis_9' 119 115 [2.10919540229885,-56.6724137931034,-36.7988505747126] 

'Vermis_10' 120 116 [1.64285714285714,-47.6250000000000,-33.3750000000000] 

'Thal_AV_L' 121 117 [-5.94805194805196,-6.85714285714286,8.01948051948052] 

'Thal_AV_R' 122 118 [5.34090909090909,-5.62500000000000,7.72159090909091] 

'Thal_LP_L' 123 119 [-9.85922330097087,-16.9174757281553,14.7524271844660] 

'Thal_LP_R' 124 120 [8.39062500000000,-14.7031250000000,14.0781250000000] 

'Thal_VA_L' 125 121 [-10.7131537242472,-5.02218700475436,3.77812995245642] 

'Thal_VA_R' 126 122 [10.3264000000000,-3.79840000000000,3.47040000000000] 

'Thal_VL_L' 127 123 [-13.4018306636156,-12.2713958810069,6.84759725400458] 

'Thal_VL_R' 128 124 [12.8835186080232,-11.0869985500242,6.45287578540358] 

'Thal_VPL_L' 129 125 [-17.7706013363029,-21.4432071269488,5.34743875278396] 

'Thal_VPL_R' 130 126 [16.8086560364465,-20.3940774487472,4.87547456340167] 

'Thal_IL_L' 131 127 [-9.75476190476191,-18.0428571428571,-0.302380952380958] 

'Thal_IL_R' 132 128 [9.37708830548927,-17.0525059665871,-0.369928400954649] 

'Thal_Re_L' 133 129 [-5.50000000000000,-8.87500000000000,-4] 

'Thal_Re_R' 134 130 [5.50000000000000,-9.12500000000000,-4.25000000000000] 

'Thal_MDm_L' 135 131 [-4.75600000000000,-15.7140000000000,4.27800000000001] 

'Thal_MDm_R' 136 132 [4.26181102362205,-15.1190944881890,3.77460629921259] 

'Thal_MDl_L' 137 133 [-7.62837837837837,-14.6013513513514,5.06081081081081] 

'Thal_MDl_R' 138 134 [7.20727272727272,-13.6690909090909,4.39636363636363] 

'Thal_LGN_L' 139 135 [-22.6521739130435,-24.7420289855072,-5.61159420289854] 

'Thal_LGN_R' 140 136 [21.7426273458445,-24.7828418230563,-5.02680965147454] 

'Thal_MGN_L' 141 137 [-15.5735294117647,-24.9117647058823,-5.58088235294117] 

'Thal_MGN_R' 142 138 [15.3333333333333,-24.4824561403509,-5.48245614035088] 

'Thal_PuI_L' 143 139 [-17.6532258064516,-29.7540322580645,-0.294354838709680] 

'Thal_PuI_R' 144 140 [16.7215686274510,-28.8745098039216,-0.501960784313724] 

'Thal_PuM_L' 145 141 [-13.2900815217391,-28.2581521739130,6.37432065217391] 
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'Thal_PuM_R' 146 142 [12.2574324324324,-27.0554054054054,6.50810810810810] 

'Thal_PuA_L' 147 143 [-12.3270676691729,-22.9962406015038,6.74060150375939] 

'Thal_PuA_R' 148 144 [11.3175182481752,-21.8175182481752,6.62773722627738] 

'Thal_PuL_L' 149 145 [-18.7196261682243,-25.4439252336449,10.4018691588785] 

'Thal_PuL_R' 150 146 [16.2550000000000,-23.0800000000000,11.7750000000000] 

'ACC_sub_L' 151 147 [-3.61727475800447,30.3760238272524,-5.99925539836188] 

'ACC_sub_R' 152 148 [5.98484848484848,31.2878787878788,-4.92424242424242] 

'ACC_pre_L' 153 149 [-4.46012759170654,43.1682615629984,6.71212121212122] 

'ACC_pre_R' 154 150 [9.33333333333333,42.7716049382716,12.2283950617284] 

'ACC_sup_L' 155 151 [-3.31487603305786,24.8024793388430,22.5611570247934] 

'ACC_sup_R' 156 152 [8.39868667917449,27.0196998123827,20.6744840525328] 

'N_Acc_L' 157 153 [-7.74171164225135,12.2737085582113,-7.73477255204318] 

'N_Acc_R' 158 154 [10.2238055322716,12.4098910310142,-7.55993294216262] 

'VTA_L' 159  [0,0,0] 

'VTA_R' 160  [0,0,0] 

'SN_pc_L' 161  [0,0,0] 

'SN_pc_R' 162  [0,0,0] 

'SN_pr_L' 163  [0,0,0] 

'SN_pr_R' 164  [0,0,0] 

'Red_N_L' 165  [0,0,0] 

'Red_N_R' 166  [0,0,0] 

'LC_L' 167  [0,0,0] 

'LC_R' 168  [0,0,0] 

'Raphe_D' 169 155 [0.628378378378372,-26.8783783783784,-10.3445945945946] 

'Raphe_M' 170 156 [-0.0461538461538424,-30.0769230769231,-21.9538461538462] 

 

In this context, brain regions labeled with coordinates [0,0,0] were considered as excluded regions. Out of the initial 170 brain regions, a 

total of 14 regions characterized by extremely low gray matter volumes were removed. Consequently, the analysis included a final set of 

156 brain regions. 

 

 

Table S5: the correlation of degree center and DBS improvement 

 R-value FDR p-value 

lPreCG -0.1790 0.0356 

rMCC 0.2074 0.0147 

lPHG 0.1904 0.0253 

rPoCG 0.1809 0.0338 

rSTG -0.2225 0.0087 

VER4_5 0.2170 0.0106 

rtPuL -0.2117 0.0127 

 

 

Table S6: the correlation of local efficiency and DBS improvement 

 R-value FDR p-value 

lHIP -0.2500 0.0031 

lPHG 0.1691 0.0475 

rPHG 0.1754 0.0396 

lIOG -0.1792 0.0354 

rIOG -0.2380 0.0049 
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rPoCG 0.1920 0.0241 

lSMG 0.1847 0.0301 

rSTG -0.1731 0.0424 

lCER3 0.1812 0.0334 

ltVPL -0.2166 0.0107 

rtPuL -0.1697 0.0466 

rRedN -0.2302 0.0066 

 


