This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
ABSTRACT
Background and Purpose: Idiopathic normal pressure hydrocephalus (iNPH) is reversible dementia, that is underdiagnosed. The purpose of this study was to develop an automated diagnostic method for iNPH using artificial intelligence techniques with a T1-weighted MRI scan.
Materials and Methods: We quantified iNPH, Parkinson's disease, Alzheimer's disease, and healthy control patients on T1-weighted 3D brain MRI scans using 452 scans for training and 110 scans for testing. Automatic component measurement algorithms were developed for Evans' index, Sylvian fissure enlargement, high-convexity tightness, callosal angle, and normalized lateral ventricle volume. XGBoost models were trained for both automated measurements and manual labels for iNPH prediction.
Results: A total of 452 patients (200 men; mean age ± standard deviation, 73.2 ± 6.5 years) were included in the training set. Of the 452 patients, 111 (24.6%) had iNPH. We obtained AUC values of 0.956 for automatically measured high-convexity tightness and 0.830 for Sylvian fissure enlargement. Intra-class correlation values of 0.824 for the callosal angle and 0.924 for Evans' index were measured. Using the decision tree of the XGBoost model, the model trained on manual labels obtained an average cross-validation AUC of 0.988 on the training set and 0.938 on the unseen test set, while the fully automated model obtained a cross-validation AUC of 0.983 and an unseen test AUC of 0.936.
Conclusion: We demonstrated a machine-learning algorithm capable of diagnosing iNPH from a 3D T1-weighted MRI scan that is robust to the failure. We propose a method to scan large numbers of 3D T1-weighted MRI scans with minimal human intervention, making possible large-scale iNPH screening.
ABBREVIATIONS: iNPH = idiopathic normal-pressure hydrocephalus; PD = Parkinson's disease; AD = Alzheimer's disease; HC = healthy control; CSF = cerebrospinal fluid; DESH = disproportionately enlarged subarachnoid space hydrocephalus; 3D = three-dimensional
Footnotes
The authors declare no conflicts of interest related to the content of this article.
- © 2024 by American Journal of Neuroradiology