PT - JOURNAL ARTICLE AU - L.C. Wu AU - Y. Zhang AU - G. Steinberg AU - H. Qu AU - S. Huang AU - M. Cheng AU - T. Bliss AU - F. Du AU - J. Rao AU - G. Song AU - L. Pisani AU - T. Doyle AU - S. Conolly AU - K. Krishnan AU - G. Grant AU - M. Wintermark TI - A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging AID - 10.3174/ajnr.A5896 DP - 2019 Feb 01 TA - American Journal of Neuroradiology PG - 206--212 VI - 40 IP - 2 4099 - http://www.ajnr.org/content/40/2/206.short 4100 - http://www.ajnr.org/content/40/2/206.full SO - Am. J. Neuroradiol.2019 Feb 01; 40 AB - SUMMARY: Magnetic particle imaging is an emerging tomographic technique with the potential for simultaneous high-resolution, high-sensitivity, and real-time imaging. Magnetic particle imaging is based on the unique behavior of superparamagnetic iron oxide nanoparticles modeled by the Langevin theory, with the ability to track and quantify nanoparticle concentrations without tissue background noise. It is a promising new imaging technique for multiple applications, including vascular and perfusion imaging, oncology imaging, cell tracking, inflammation imaging, and trauma imaging. In particular, many neuroimaging applications may be enabled and enhanced with magnetic particle imaging. In this review, we will provide an overview of magnetic particle imaging principles and implementation, current applications, promising neuroimaging applications, and practical considerations.FFLfield-free lineFFPfield-free pointFFRfield-free regionMPImagnetic particle imagingSPIOsuperparamagnetic iron oxideSPIONsuperparamagnetic iron oxide nanoparticle