%0 Journal Article %A M. Borzage %A A. Saunders %A J. Hughes %A J.G. McComb %A S. Blüml %A K.S. King %T The First Examination of Diagnostic Performance of Automated Measurement of the Callosal Angle in 1856 Elderly Patients and Volunteers Indicates That 12.4% of Exams Met the Criteria for Possible Normal Pressure Hydrocephalus %D 2021 %R 10.3174/ajnr.A7294 %J American Journal of Neuroradiology %P 1942-1948 %V 42 %N 11 %X BACKGROUND AND PURPOSE: Many patients with dementia may have comorbid or misdiagnosed normal pressure hydrocephalus, a treatable neurologic disorder. The callosal angle is a validated biomarker for normal pressure hydrocephalus with 93% diagnostic accuracy. Our purpose was to develop and evaluate an algorithm for automatically computing callosal angles from MR images of the brain.MATERIALS AND METHODS: This article reports the results of analyzing callosal angles from 1856 subjects with 5264 MR images from the Open Access Series of Imaging Studies and the Alzheimer’s Disease Neuroimaging Initiative databases. Measurement variability was examined between 2 neuroradiologists (n = 50) and between manual and automatic measurements (n = 281); from differences in simulated head orientation; and from real-world changes in patients with multiple examinations (n = 906). We evaluated the effectiveness of the automatic callosal angle to differentiate normal pressure hydrocephalus from Alzheimer disease in a simulated cohort.RESULTS: The algorithm identified that 12.4% of subjects from these carefully screened cohorts had callosal angles of <90°, a published threshold for possible normal pressure hydrocephalus. The intraclass correlation coefficient was 0.97 for agreement between neuroradiologists and 0.90 for agreement between manual and automatic measurement. The method was robust to different head orientations. The median coefficient of variation for repeat examinations was 4.2% (Q1 = 3.1%, Q3 = 5.8%). The simulated classification of normal pressure hydrocephalus versus Alzheimer using the automatic callosal angle had an accuracy, sensitivity, and specificity of 0.87 each.CONCLUSIONS: In even the most pristine research databases, analyses of the callosal angle indicate that some patients may have normal pressure hydrocephalus. The automatic callosal angle measurement can rapidly and objectively screen for normal pressure hydrocephalus in patients who would otherwise be misdiagnosed.ADAlzheimer diseaseADNIAlzheimer’s Disease Neuroimaging InitiativeCAcallosal angleDESHdisproportionately enlarged subarachnoid space hydrocephalusICCintraclass correlation coefficientNPHnormal pressure hydrocephalusOASISOpen Access Series of Imaging Studies %U https://www.ajnr.org/content/ajnr/42/11/1942.full.pdf