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Supplementary methods 
There are several tools available for evaluating the quality of research studies. For this work, we considered how 
relevant the tool was for AI and medical imaging, as well as how common the tool was in similar systematic 
reviews. We considered three tools for our work, CLAIM, QUADAS-2, and PROBAST. 
CLAIM is designed for AI studies and imaging studies, so it was included in this work. 
QUADAS-2 was found to have significant overlap with PROBAST, our determination of overlapping criteria is 
shown below. PROBAST was developed more recently and has a more thorough explanation document, as well as 
deeper analysis of the model analysis, so we chose to use it for our study rather than QUADAS. 
 
Overlap between QUADAS-2 and PROBAST criteria: 

QUADAS-2 criteria Overlapping PROBAST criteria 
 1.1 1.1 
 1.2 1.1 
 1.3 1.2 
 2.1 3.5 - not relevant for image translation 
 2.2 4.7 - not relevant for image translation 
 3.1 Domain 2: Applicability 
 3.2 2.2 - not relevant for AI 
 4.1 3.6 - relevant for time-sensitive analyses 
 4.2 2.1 - not relevant for AI 
 4.3 2.1 - not relevant for AI 
 4.4 4.3 - not relevant for AI 

 
CLAIM:  
 
Overview: 
In general, the approach from Sivanesan, et al. will be followed.  
CLAIM is designed specifically for AI studies in medical imaging, so the questions should be relevant to the studies 
included in this review.  
It should be noted that CLAIM is designed based on the STARD criteria for diagnostic studies. Many image-to-
image translation models are designed for attenuation correction, radiotherapy planning, MRI-only protocols, and 
other purposes unrelated to classification tasks. Thus, questions such as CLAIM 14 and 15 are difficult to judge 
since the work generates an image rather than annotations or a diagnosis. Without image annotations, there is no 
need for annotation evaluations, so questions 16-18 are not applicable to those studies.  
 
See also supplementary table 1 for detailed judging criteria.  
 
PROBAST 
 
Overview:  
PROBAST was extensively designed to evaluate prognostic or diagnostic studies where the patients are provided a 
treatment and their outcomes are recorded. This is vastly different from AI development research where it is 
unethical to alter the outcome of a patient until the AI model has been approved by the appropriate regulatory 
agency. However, several questions posed are relevant to nearly all studies, and these can help differentiate the 
methods of the researchers. 
 
Thus, a modified PROBAST was used to evaluate if the methods or datasets used in these studies showed risks of 
bias. Questions were omitted if they are not relevant to AI models or to image generation studies. Below are the 
criteria all studies were judged using. See also supplementary table 2. 
 



Domain 1. Participants  
Question 1.1: Domain 1 examines if the enrolled patients were appropriate for the study. Several aspects of the 
traditional PROBAST are not applicable to image translation, For our work we considered if the included 
participants were collected consistently and that there weren’t any obvious exclusions that would have gifted the 
authors a cleaner dataset at the expense of population representation. 
Most studies utilized a publicly available dataset. While these are encouraged in AI research, many are not ideal for 
medical research.1-5 It is common to curate data for AI research in a way that alters the demographic and disease 
ratios,1, 2, 4-6 or so that only the cleanest examples of only the target disease are included. However, real patient data 
can show many conditions at the same time and there may be artifacts from movement or differences in equipment. 
Further, curated data may have a set prevalence—so the model has enough training data—which may differ wildly 
from actual population prevalence. This means the model looks great using the training data, but can only perform 
this well when given images within that prevalence and that rank of image quality. So, the use of public datasets is a 
source of concern if the target population does not match that of the current study.  
 
Question 1.2: though the inclusion and exclusion criteria are relevant to establish any changes to the prevalence 
ratio, this information is not explicitly stated in most studies. The importance of including clear inclusion and 
exclusion criteria is two-fold. If certain images have been excluded such that misrepresents the typical image 
quality4 or the disease or demographic prevalence in the population,7 the resultant model will have poor performance 
on real images.2, 4, 8-14 Conversely, it is reasonable to exclude images from AI model development if they may lead to 
spurious correlations.2, 15 Studies which clearly stated their exclusion criteria were rated as low risk of bias.16  
 
Domain 2. Predictors 
This domain is meant to identify human biases (such as knowing the answer before performing the assessment) and 
bias introduced by using different means to identify or collect the predictors.  
In our work, we consider the features of the input image as the predictors, and the output translated image as the 
outcome. However, the predictors are not being “assessed” in a traditional sense, an AI is identifying the features, 
then mathematically manipulating them according to rules it made up. Therefore, this entire domain is unlikely to 
have any bias and was excluded.  
 
Domain 3. Outcome 
This domain is designed to identify bias caused by inappropriately defining or assessing the outcome. In our case, 
the outcome is the generation of the translated image rather than a diagnosis or prognosis. So, again, this domain 
was excluded. 
Questions 3.1 and 3.2 of this domain ask if the person collecting the outcome data did so knowing how much data 
and in what format it should be collected. Again, this is not applicable to AI studies since the model always outputs 
the outcome (translated image) according to its algorithm. Similarly, questions 3.4 and 3.6 are not applicable for AI 
studies.  
Questions 3.3 and 3.5 are inappropriate for image translation studies because the outcome is completely dependent 
on the predictors. In cases where the translated image is used as part of a diagnostic test, question 3 may be 
applicable, but we have excluded it for the purpose of this review.  
 
Domain 4. Analysis 
Domain 4 is designed to assess if the final data was evaluated appropriately to form the resultant model performance 
measurement. For example, did enough patients have the outcome to create an adequate sample size? Did the 
researchers utilize p-hacking techniques such as altering the category definitions to fit the results? This domain is the 
most complex, but also the most relevant to AI model development studies.  
 
Question 4.1 asks if the sample size was appropriate. This question is relevant to AI model development as small 
test datasets are not sufficient to prove generalizability5, 17 or expose any biases or overfitting18, 19 that happened 
during training. There is no standard for either the required number of individuals or the included number of images 
for multi-section modalities such as MRI. PROBAST recognizes that the necessary number of patients for machine 
learning studies differs based on model type and purpose, but recommends validation on a test set including more 
than 100 individuals. Studies with fewer than 100 patients in the test dataset were regarded as at high risk of bias.  
 
A question for future studies is “Is it acceptable to test on thousands of images from one patient and assume similar 
results will be produced for other patients?” Particularly for MRI and CT models, there may be very few patients, 



but thousands of images. It is not yet possible to prove this question, so, we considered the number of patients to be 
the main determinant here.  
 
Question 4.2 is not appropriate for image translation works and was excluded.  
Question 4.3 and 4.4 are not appropriate for AI studies. 
Question 4.5 is not appropriate for AI studies since the algorithm is not subject to this problem.  
Question 4.6 is not relevant for image translation studies and was excluded.  
Question 4.7 addresses model calibration. This is usually calculated for AI models using AUC, the c-index, or 
sensitivity and specificity, which are not applicable to image translation studies  
 
Question 4.8 asks if the model optimism caused by insufficient data was addressed. PROBAST explicitly states that 
splitting a single dataset into training and test datasets is not adequate; the authors must test on an external dataset. 
An external test set shows if the model is robust to typical image variance2, 14 and may expose learned biases which 
can be addressed with further model training. Studies with no external testing data were marked as high risk of bias. 
 
Question 4.9 is not relevant for AI models.  
 
Adherence evaluation 
 
Statistical tests for CLAIM:  
In general, the approach from Sivanesan, et al. will be followed.  
 
“Yes” and “N/A” are scored as 1 point, while “No” is 0 points.  
 
The Shapiro-Wilks test was used to confirm normal distribution of CLAIM adherence scores, the two-sample t test 
was used to compare means and the Wilcoxon rank-sum test was used to compare median scores between 
manuscripts published in medically-focused vs engineering-focused journals. Fisher’s exact test was used to 
compare medically-focused versus engineering-focused studies.  
 
Statistical tests for PROBAST:  
 
Each of the 5 possible responses is given a score. As shown in the table below, questions are given zero points for a 
“no” answer, one point for a “probably no” answer, two points for an “unclear” answer, three points for a “probably 
yes” answer and four points for a “yes” answer. This gives a total possible total score of 16 for the four questions. 
We can then use this score to rank studies based on the extent of bias rather than the classification of at risk of bias 
or not.  
 

Study adheres to the 
PROBAST criteria Points 

Yes 4 
Probably Yes 3 
Unclear 2 
Probably No 1 

No 0 
 
 
The Shapiro-Wilks test was used to confirm normal distribution of PROBAST adherence scores, the two-sample t 
test was used to compare means and the Wilcoxon rank-sum test was used to compare median scores between 
manuscripts published in medically-focused vs engineering-focused publications. Fisher’s exact test was used to 
compare medically-focused versus engineering-focused studies.  
 
 
Statistical significance is defined as P < .05.   



Search criteria:  
 
We chose our search criteria based on the most commonly used terms and their variants. These terms were based on 
our inclusion criteria: radiological imaging, image translation using AI.  
In the case of IEEE, since there was no filter to ensure medically related studies were returned, we added exclusion 
criteria to filter out unrelated topics.  
 
Scopus 

8/2/2023 
( TITLE-ABS-KEY ( radiology )  OR  TITLE-ABS-KEY ( radiography )  OR  TITLE-ABS-KEY 
( radiograph )  OR  TITLE-ABS-KEY ( computed tomography )  OR  TITLE-ABS-KEY ( CT )  OR  TITLE-
ABS-KEY ( MRI )  OR  TITLE-ABS-KEY ( magnetic resonance )  OR  TITLE-ABS-KEY ( positron emission 
tomography )  OR  TITLE-ABS-KEY ( PET )  OR  TITLE-ABS-KEY ( x-ray ) )   
AND  ( TITLE-ABS-KEY ( pix2pix )  OR  TITLE-ABS-KEY ( "image translation" )  OR  TITLE-ABS-KEY 
( "generative adversarial network" )  OR  TITLE-ABS-KEY ( "generative network" )  OR  TITLE-ABS-KEY 
( "GAN" )  OR  TITLE-ABS-KEY ( " cycleGAN ")  OR  TITLE-ABS-KEY ( " image synthesis " )  OR  
TITLE-ABS-KEY ( " image generation " )  OR  TITLE-ABS-KEY ( " image-to-image " )  ) 
AND  ( LIMIT-TO ( SUBJAREA ,  "MEDI" ) ) 

 
IEEE Xplore 

8/9  
2015 - present 
NOT (("Full Text Only":"transducer") OR ("Full Text Only":"face recognition") OR ("Full Text 
Only":"automotive") OR ("Full Text Only":"defect detect") OR ("Full Text Only":"automobile") OR ("Full 
Text Only":"transportation") OR ("Full Text Only":"radar") OR("Full Text Only":"baggage inspection") OR 
("Full Text Only":"sonar") OR ("Full Text Only":"remote sensing") OR ("Full Text Only":"suspicious object") 
OR ("Full Text Only":"addiction") OR ("Full Text Only":"welding") OR ("Full Text Only":"Fourier”) OR 
("Full Text Only":"solder") OR ("Full Text Only":"antenna") OR ("Full Text Only":"pollution") OR ("Full 
Text Only":"mobile communication") OR ("Full Text Only":"security") OR ("Full Text Only":"forgery") OR 
("Full Text Only":"forensic") )  
 
AND (("Full Text Only":"magnetic resonance") OR ("Full Text Only":"positron emission tomography") OR 
("Full Text Only":"computed tomography") OR ("Full Text Only":"PET") OR ("Full Text Only":"MRI") OR 
("Full Text Only":"CT") OR ("Full Text Only":"radiograph") OR ("Full Text Only":"x-ray") OR ("Full Text 
Only":"radiography")) AND (("Full Text Only":"deep learning") OR ("Full Text Only":"AI") OR ("Full Text 
Only":"artificial intelligence")) AND (("Full Text Only":"image translation") OR ("Full Text Only":"GAN") 
OR ("Full Text Only":"generative adversarial network") OR ("Full Text Only":"cycleGAN") OR ("Full Text 
Only":"pix2pix") OR ("Full Text Only":"image generation") OR ("Full Text Only":"image-to-image") OR 
("Full Text Only":"image synthesis")) 

 
Pubmed 

12/18/2023 1015 results 
("Pix2Pix"[All Fields] OR "conditional gan"[All Fields] OR "cGAN"[All Fields] OR "image-to-image"[All 
Fields] OR "image-to-image"[All Fields] OR "image translation"[All Fields] OR "image synthesis"[All Fields] 
OR "synthesized image"[All Fields] OR "generative adversarial network"[All Fields] OR "GAN"[All Fields]) 
AND ("radiology"[All Fields] OR "radiograph"[All Fields] OR "x-ray"[All Fields] OR "radiography"[All 
Fields] OR "positron emission tomography"[All Fields] OR "PET"[All Fields] OR "MR"[All Fields] OR 
"magnetic resonance"[All Fields] OR "CT"[All Fields] OR "computed tomography"[All Fields])  
AND ("artificial intelligence"[All Fields] OR "AI"[All Fields] OR "machine learning"[All Fields] OR "deep 
learning"[All Fields]) AND 2010/01/01:2024/12/31[Date - Publication] 

 
  



R code for Shapiro-Wilk normality test 
 

> shapiroResults <- shapiro.test(shapiroInputData) 
> cat("Shapiro-Wilk Test:\n") 
> cat("Test Statistic =", shapiroResults$statistic, "\n") 
> cat("P-value =", shapiroResults$p.value, "\n") 

 
 
R code for determining Fisher’s statistic  
 

For CLAIM tables 

  
Medically 
focused 

Engineering 
focused 

Y   

N   
 
# Load the readxl package if not already loaded 
if (!requireNamespace("readxl", quietly = TRUE)) { 
  install.packages("readxl") 
  library(readxl) 
} 
 
# Specify the directory path where your .xlsx files are located 
folder_path <- "/Users/Desktop/" 
 
# List all .xlsx files in the specified folder 
xlsx_files <- list.files(path = folder_path, pattern = ".xlsx", full.names = TRUE) 
 
# Create an empty list to store the matrices 
matrices <- list() 
 
# Loop through the .xlsx files and read them into matrices 
for (file in xlsx_files) { 
  # Read the .xlsx file into a data frame 
  data <- read_excel(file) 
   
  # Convert the data frame to a matrix 
  data_matrix <- as.matrix(data) 
   
  # Assign a name to the matrix (e.g., based on the file name) 
  matrix_name <- sub(".xlsx", "", basename(file)) 
   
  # Store the matrix in the list 
  matrices[[matrix_name]] <- data_matrix 
} 
 
# You now have a list of matrices, where each matrix corresponds to a .xlsx file. 
# You can access them using matrices[[1]], matrices[[2]], etc. 
 
for (i in 1:length(matrices)) { 
  result <- fisher.test(matrices [[i]]) 
  results_list[[i]] <- result 
} 
 



# Specify the directory and filename where you want to save the CSV file 
output_file <- "/Users/Desktop/results.csv" 
 
# Write the results_list to a CSV file 
write.csv(do.call(rbind, results_list), file = output_file, row.names = FALSE) 
 
for PROBAST tables:  
 

  
Medically 
focused 

Engineering 
focused 

Y or PY   

U, PN, or N   
 
#Import table for each question (four times in this work) 
> library(readxl) 
> Table <- ("Users/Desktop/Table.xlsx") 
 
#Add row names 
> rownames(Table) = c("Yes", "Probably Yes", "Unclear", "Probably No", "No") 
 
# Convert table to matrix 
> Matrix1 <- as.matrix(Table) 
 
#Perform Fisher’s Exact test 
> fisher.test(Matrix1,,simulate.p.value = TRUE) 
 
 Fisher's Exact Test for Count Data with simulated p-value (based on 2000 replicates) 
 
  



Supplementary results  
 
Analysis results:  
Shapiro-Wilk normality test using all data: 
 
CLAIM adherence:  

Test Statistic = 0.9758616 
P-value = .05841379 
The data is normally distributed 
 

Probast adherence 
Test Statistic = 0.7777314  
P-value < .000001 
The data is not normally distributed 
 

 
Shapiro-Wilk normality test using studies from medically-focused journals 
 
CLAIM adherence:  

Test Statistic = 0.9608678 
P-value = .04048373 
The data is not normally distributed 
 

Probast adherence 
Test Statistic = 0.7363182 
P-value < .000001 
The data is not normally distributed 

 
Shapiro-Wilk normality test using studies from engineering-focused journals 
 
CLAIM adherence:  

Test Statistic = 0.937612 
P-value = .03507005 
The data is not normally distributed 

 
Probast adherence 

Test Statistic = 0.8972887 
P-value = .0021388  
The data is not normally distributed 

 
  



Supplementary Tables  
 
Supplementary table 1. CLAIM criteria as used in this study 

Title/ 
Abstract 1 Is AI, GAN, or deep learning mentioned in the title, abstract, or keywords? (main text only) 
 2 Is there a rational order to the abstract? (main text only) 
Introductio
n 3 Is background and rationale for the work described? (main text only) 
 4 Is the purpose of the work described? (main text only) 

Methods 5 
Do the authors explicitly state that data was prospectively or retrospectively collected? (main 
text only) 

 6 Is some study goal described in the introduction or methods? (main text only) 
 7 Is the source of the data described? (main text or supplement) 

 8 
Do the authors detail which data was eligible, including where it is from and when the exams 
occurred? (main text or supplement) 

 9 If the authors perform preprocessing of the data, is it described? (main text or supplement) 

 10 
Are data subsets used in the study? This refers to preprocessing subsets, not 
training/validation (main text or supplement) 

 11 Do the authors define the data using terms common for indexing? (main text or supplement) 

 12 
Do the authors state that and how data was deidentified or anonymized? (main text or 
supplement) 

 13 Do the authors state how missing data was handled? (main text or supplement) 

 14 
Typically the Ground Truth is the target imaging modality. Do the authors state enough 
details for replication? (ie: T1 MRI rather than MRI) (main text or supplement) 

 15 

N/A if image translation only. Do the authors give reason for this Ground Truth if there are 
variations within the modality? (ie: manual versus computer-assisted segmentation or T1 
MRI rather than T2 MRI) (main text or supplement) 

 16 
N/A if image translation only. For segmentation works, are the annotators qualifications 
listed? (main text or supplement) 

 17 
N/A if image translation only. For segmentation works, are the segmentation tools 
described? (main text or supplement) 

 18 
N/A if image translation only. For segmentation works, was the variability described? (main 
text or supplement) 

 19 
Do the authors justify the size of the dataset with sample size calculations anywhere in the 
text? (main text or supplement) 

 20 
Are the training/test dataset partitions described in either patient numbers or proportions? 
(main text or supplement) 

 21 
Do the authors state that the above partitions were on a patient/image/ etc basis? (main text 
or supplement) 

 22 
Is the model described in enough detail that an AI researcher could replicate it? Best is with 
a figure. (main text or supplement) 

 23 Are the software libraries (python, etc) listed? (main text or supplement) 
 24 Is model parameter initialization described? (main text or supplement) 

 25 
Are training details described? Especially hyperparameters and any augmentation used. 
(main text or supplement) 

 26 
Did the authors describe when to stop training? Describing the loss functions is sufficient. If 
multiple models were developed, how was the best model chosen? (main text or supplement) 

 27 
N/A if no ensembling is apparent. If ensembling applied, was the method described? (main 
text or supplement) 

 28 
Do the authors state the metrics they will use in the methods section? (“No” if you have to 
guess the metrics by looking at the table.) (main text only) 



 29 
Do the authors state how they measured significance (if numerical values were used)? This 
can be significance when using p-value or confidence range. (main text or supplement) 

 30 
Was there evaluation of robustness of the model? Or were results shown for all participants? 
ie: violin plots, geometrical accuracy plots. (main text or supplement) 

 31 
Do the authors provide saliency maps, uncertainty maps, or error maps for model 
explainability? (main text or supplement) 

 32 Was there an external test dataset? Can be geographic or temporal. (main text only) 

Results 33 
Is there a diagram detailing the inclusion and exclusion of participants? (main text or 
supplement) 

 34 Are relevant demographics presented for each partition? (main text or supplement) 
 35 Are the performance metrics described in #28 presented? (main text only) 
 36 Are confidence intervals for the performance metrics given? (main text or supplement)  

 37 
Is there any evaluation of failed or improperly classified or segmented cases? (main text or 
supplement) 

Discussion 38 Are limitations explicitly provided? (main text only) 
 39 Do the authors discuss how this model is clinically valuable? (main text only) 
Other 
information 40 Was the study registered? (main text or supplement) 

 41 
If there is a separate protocol, is the website or supplementary file described? N/A if no 
additional information provided (main text only) 

 42 Are funding sources revealed? (main text only) 
 



Supplementary table 2. PROBAST criteria as used in this study 

 
  

Domain 1  
1.1 Was internal data used or a public dataset?  

 Were there consistent collection methods? 
 Was there a data collection protocol? 
 Was the dataset size determined based on reaching statistical significance? 
 Was the data collection setting described?  
 Were collection dates described?  
 Was this a convenience, consecutive, or random sample? 
 Was the disease/normal distribution consistent with the population at that facility?  
 Were dataset demographics listed? (at least sex) 
 Was the disease/normal distribution consistent with the population at that facility?  
 Were reader/annotator qualifications described? (if applicable) 
 Was any pre-processing performed? (including cropping and resizing) 
 Was data anonymized? 
 Were there methods for handling missing data?  

1.2 Were inclusion or exclusion criteria appropriate? 
Domain 2 Not appropriate for AI 
Domain 3 Not appropriate for image translation  
Domain 4  

4.1 Were there enough patients in the test set? (>100) 
4.2 Not appropriate for image translation  
4.3 Not appropriate for image translation  
4.4 Not appropriate for image translation  
4.5 Not appropriate for AI 
4.6 Not appropriate for Image translation  
4.7 Were calibration and discrimination assessed?  

4.8 
Did the authors consider and compensate for model optimism? Especially by use of an 
external test. 

4.9 Not appropriate for AI 



Supplementary table 3. Included studies 

 

First author 
Publica
tion 
year 

Translation 
direction Clinical purpose Purpose category Source 

journal type 

Abu-Srhan A20 2021 bidirectional 
MRI-CT Treatment Radiotherapy planning Medicine 

Amini Amirkolaee 
H21 2022 bidirectional 

MRI-CT 
No specific clinical 
purpose Image translation Medicine 

Amini Amirkolaee 
H22 2022 

bidirectional 
MR-CT, 
bidirectional 
PET-CT 

No specific clinical 
purpose Image translation Engineering 

Anaya E23 2020 MRI-CT Diagnosis Attenuation correction Engineering 

Arabi H24 2019 MRI-CT Diagnosis Attenuation correction Medicine 

Armanious K25 2019 PET-CT Diagnosis Attenuation correction Engineering 

Armanious K26 2020 PET-CT Diagnosis Attenuation correction Medicine 

Bazangani F27 2022 PET-MR No specific clinical 
purpose Image translation Engineering 

Bharti V28 2023 bidirectional 
MRI-CT Treatment Radiotherapy planning Medicine 

Blanc‐Durand P29 2019 MRI-CT Diagnosis Attenuation correction Medicine 

Bourbonne V30 2021 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Cao G31 2021 MRI-CT Treatment Radiotherapy planning Engineering 

Chen X32 2022 MRI-CT Segmentation Segmentation Engineering 

Choi H33 2018 PET-MR Diagnosis Amyloid burden 
quantification Medicine 

Dinkla AM34 2018 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Dovletov G35 2022 MRI-CT Treatment Radiotherapy planning Engineering 

Emami H36 2020 MRI-CT Treatment Radiotherapy planning Engineering 

Emami H37 2018 MRI-CT Treatment Radiotherapy planning Medicine 

Estakhraji SIZ38 2023 MRI-CT Treatment Radiotherapy planning Medicine 

Feng E39 2022 CT-MRI Segmentation Stroke lesion identification Medicine 

Garzon G40 2022 CT-MRI Segmentation Stroke lesion identification Engineering 

Gholamiankhah F41 2022 MRI-CT Treatment Radiotherapy planning Medicine 

Gong K19 2018 MRI-CT Diagnosis Attenuation correction Medicine 

Gong K42 2021 MRI-CT Diagnosis Attenuation correction Medicine 

Gu X43 2023 CT-MRI Treatment Radiotherapy planning Medicine 

Gu Y44 2021 MRI-CT Treatment Radiotherapy planning Engineering 

Gupta D45 2019 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Gutierrez A46 2022 bidirectional 
MRI-CT Segmentation Stroke lesion identification Medicine 

Han R47 2022 MRI-CT Registration Registration Engineering 

Han R48 2021 MRI-CT Registration Registration Engineering 

Han X49 2017 MRI-CT Treatment Radiotherapy planning Medicine 

Hashimoto F50 2021 PET-CT Diagnosis Attenuation correction Medicine 



First author 
Publica
tion 
year 

Translation 
direction Clinical purpose Purpose category Source 

journal type 

Hu S51 2022 MRI-PET Diagnosis Alzheimer’s classification Engineering 

Hu S52 2019 MRI-PET Diagnosis Diagnosis Engineering 

Huo Y53 2019 CT-MRI Segmentation Segmentation Engineering 

Hussein R54 2022 MRI-PET Diagnosis Diagnosis of several diseases Engineering 

Jabbarpour A55 2022 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Jang H56 2018 MRI-CT Diagnosis Attenuation correction Medicine 

Jiao J57 2020 US-MRI Diagnosis Diagnosis Engineering 

Jin C B58 2019 CT-MRI Treatment Radiotherapy planning Engineering 

Jin C B59 2018 CT-MRI Treatment Radiotherapy planning Engineering 

Kazemifar S60 2020 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Kazemifar S61 2019 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Kearney V62 2019 MRI-CT Treatment Radiotherapy planning Medicine 

Kläser K63 2021 MRI-CT Diagnosis Attenuation correction Medicine 

Kläser K64 2021 MRI-CT Treatment Radiotherapy planning Medicine 

Koh H65 2022 MRI-CT Treatment Therapy planning Medicine 

Koike Y66 2019 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Ladefoged CN67 2019 MRI-CT Diagnosis Attenuation correction Medicine 

Lan H68 2021 MRI-PET Diagnosis Diagnosis Medicine 

Lei Y69 2019 MRI-CT Treatment Radiotherapy planning Engineering 

Lei Y70 2019 MRI-CT Treatment Radiotherapy planning Medicine 

Li G71 2019 MRI-CT Treatment Radiotherapy planning Engineering 

Li W72 2020 CT-MRI Treatment Radiotherapy planning Medicine 

Li Y73 2020 MRI-CT Treatment Radiotherapy planning Engineering 

Li Y74 2020 bidirectional 
MRI-CT 

No specific clinical 
purpose Image translation Medicine 

Liu F75 2018 MRI-CT Diagnosis Attenuation correction Medicine 

Liu F76 2019 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Liu H77 2021 MRI-PET Diagnosis Amyloid burden 
quantification Medicine 

Liu H78 2020 MRI-PET Diagnosis Amyloid burden 
quantification Engineering 

Liu M79 2022 CT-MRI Treatment Radiotherapy planning Engineering 

Liu X80 2021 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Maspero M81 2020 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Nehra R82 2021 MRI-CT Treatment Radiotherapy planning Engineering 

Neppl S83 2019 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Nie D84 2017 MRI-CT Treatment Radiotherapy planning Medicine 

Nie D85 2018 MRI-CT Treatment Radiotherapy planning Engineering 



First author 
Publica
tion 
year 

Translation 
direction Clinical purpose Purpose category Source 

journal type 

Nijskens L86 2023 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Pan Y87 2018 MRI-PET Diagnosis Alzheimer’s classification Medicine 

Prokopenko D88 2019 MRI-CT Treatment Radiotherapy planning Engineering 

Qin J89 2022 MRI-PET Prognosis MRI-only Glioma 
management Medicine 

Ranjan A90 2021 MRI-CT Treatment Radiotherapy planning Medicine 

Reinhold JC91 2020 CT-MRI No specific clinical 
purpose Image translation Engineering 

Reinhold JC92 2020 CT-MRI Segmentation Segmentation Engineering 

Rubin J93 2019 CT-MRI Segmentation Stroke lesion identification Engineering 

Sanaat A94 2021 MRI-CT No specific clinical 
purpose Image translation Medicine 

Shafai-Erfani G95 2019 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Singh M96 2021 MRI-CT Treatment Radiotherapy planning Engineering 

Soltanpour M97 2023 CT-MRI Segmentation Stroke lesion identification Engineering 

Spuhler KD98 2019 MRI-PET Diagnosis Attenuation correction Medicine 

Stimpel B99 2019 MRI-Xray Treatment Interventional imaging Engineering 

Sun B100 2022 MRI-CT Treatment Radiotherapy planning Medicine 

Sun H101 2019 MRI-PET Diagnosis Diagnosis Engineering 

Takamiya K102 2023 MRI-CT Treatment Radiotherapy planning Engineering 

Takita H103 2023 MRI-PET Diagnosis, Prognosis Diagnosis, Prognosis of 
glioma Medicine 

Tang B12 2020 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Tao L104 2020 MRI-CT Diagnosis Attenuation correction Medicine 

Wang C105 2021 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Wang C106 2022 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Wang CC107 2022 MRI-CT Treatment Radiotherapy planning Medicine 

Wang J108 2022 MRI-CT Treatment Radiotherapy planning Medicine 

Wang J109 2022 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

Wang J110 2021 MRI-CT Treatment Radiotherapy planning Engineering 

Wang J111 2023 bidirectional 
MRI-CT 

No specific clinical 
purpose Image translation Medicine 

Wei W112 2019 MRI-PET Diagnosis MRI-only MS classification Medicine 

Wolterink J113 2017 MRI-CT Treatment Radiotherapy planning Medicine 

Xiang L114 2018 MRI-CT Treatment Radiotherapy planning Medicine 

Xu R115 2022 MRI-CT Treatment Radiotherapy planning Engineering 

Yang H116 2020 MRI-CT Registration Registration Medicine 

Yang H117 2020 MRI-CT Treatment Radiotherapy planning Engineering 

Zhang J118 2022 MRI-PET Diagnosis Alzheimer’s classification Medicine 



First author 
Publica
tion 
year 

Translation 
direction Clinical purpose Purpose category Source 

journal type 

Zhao S119 2022 MRI-CT Treatment Radiotherapy planning + 
dose calculations Medicine 

 
  



Supplementary table 4. Timing of imaging pairs for model training 
 

First author Clinical 
purpose 

Purpose 
category Database name 

Case-cohort, 
consecutive, or case-
control sample 

Timing between source 
image and ground 
truth image 

Abu-Srhan 
A20 Treatment Radiotherapy 

planning 
Han (2017), pooled with 
internal data random, unknown Unclear 

Amini 
Amirkolaee 
H22 

No specific 
clinical 
purpose 

Image 
translation Han (2017) random Unclear 

Amini 
Amirkolaee 
H22 

No specific 
clinical 
purpose 

Image 
translation Han (2017) random Unclear 

Anaya E23 Diagnosis Attenuation 
correction internal cohort Unclear 

Arabi H24 Diagnosis Attenuation 
correction internal cohort Unclear 

Armanious 
K25 Diagnosis Attenuation 

correction internal consecutive Unclear 

Armanious 
K26 Diagnosis Attenuation 

correction internal cohort joint PET/CT scanner 
(SOMATOM mCT) 

Bazangani 
F27 

No specific 
clinical 
purpose 

Image 
translation ADNI (10/11/2020) controls taken from 

database less than 1 year 

Bharti V28 Treatment Radiotherapy 
planning Al-Kadi (2021) cohort N/A 

Blanc‐
Durand P29 Diagnosis Attenuation 

correction 
manufacturer's dataset, 
internal  consecutive Unclear 

Bourbonne 
V30 Treatment Radiotherapy 

planning internal cohort less than 14 days 

Cao G31 Treatment Radiotherapy 
planning internal cohort N/A 

Chen X32 Segmentati
on Segmentation CQ500, ADNI cohort Unclear 

Choi H33 Diagnosis 

Amyloid 
burden 
quantificatio
n 

ADNI cohort Unclear 

Dinkla 
AM34 Treatment Radiotherapy 

planning internal cohort Unclear 

Dovletov 
G35 Treatment Radiotherapy 

planning RIRE cohort Unclear 

Emami H36 Treatment Radiotherapy 
planning internal cohort Unclear 

Emami H37 Treatment Radiotherapy 
planning internal cohort Unclear 

Estakhraji 
SIZ38 Treatment Radiotherapy 

planning internal cohort within 48 hours 

Feng E39 Segmentati
on 

Stroke lesion 
identification ISLES2018  stroke cohort within 3 hours 

Garzon G40 Segmentati
on 

Stroke lesion 
identification 

ISLES2017 & 
ISLES2018 for training, 
testing on iDBMRXFDG 

unclear, unclear, 
healthy cohort 

unpaired training, same 
day for iDBMRXFDG 

Gholamiank
hah F41 Treatment Radiotherapy 

planning internal cohort Unclear 

Gong K19 Diagnosis Attenuation 
correction internal healthy cohort Unclear 

Gong K42 Diagnosis Attenuation 
correction internal healthy cohort Unclear 

Gu X43 Treatment Radiotherapy 
planning internal cohort within 2 weeks 



First author Clinical 
purpose 

Purpose 
category Database name 

Case-cohort, 
consecutive, or case-
control sample 

Timing between source 
image and ground 
truth image 

Gu Y44 Treatment Radiotherapy 
planning 

https://brainweb.bic.mni.
mcgill.ca/ cohort Unclear (all synthetic 

data) 

Gupta D45 Treatment Radiotherapy 
planning internal cohort Unclear 

Gutierrez 
A46 

Segmentati
on 

Stroke lesion 
identification 

pooled ESCAPE trial, 
the I-KNOW study, the 
INTERRSeCT study, 
and local datasets from 
the University Medical 
Center, Hamburg-
Eppendorf 

RCT, cohort, cohort, 
unclear  

2-7 days after symptoms 
(follow-up imaging), 
unclear 

Han R48 Registration Registration internal cohort same day 
Han R47 Registration Registration internal cohort same day 

Han X49 Treatment Radiotherapy 
planning 

internal (this is the Han 
dataset source paper) random Unclear 

Hashimoto 
F50 Diagnosis Attenuation 

correction internal cohort Unclear 

Hu S52 Diagnosis Diagnosis ADNI cohort Unclear 

Hu S51 Diagnosis Alzheimer’s 
classification ADNI, OASIS-3 for test cohort Unclear 

Huo Y53 Segmentati
on Segmentation OASIS cohort N/A 

Hussein R54 Diagnosis 
Diagnosis of 
several 
diseases 

internal case-control simultaneously 

Jabbarpour 
A55 Treatment Radiotherapy 

planning internal cohort N/A 

Jang H56 Diagnosis Attenuation 
correction internal cohort same day 

Jiao J57 Diagnosis Diagnosis 

MRI from CRL fetal 
brain atlas, US from 
INTERGROWTH-21st 
project 

convenience N/A 

Jin C B58 Treatment Radiotherapy 
planning internal cohort Unclear 

Jin C B59 Treatment Radiotherapy 
planning internal cohort Unclear 

Kazemifar 
S60 Treatment Radiotherapy 

planning internal random, cohort Unclear 

Kazemifar 
S61 Treatment Radiotherapy 

planning internal cohort Unclear 

Kearney V62 Treatment Radiotherapy 
planning internal cohort Unclear 

Kläser K63 Diagnosis Attenuation 
correction internal cohort immediately after 

Kläser K64 Treatment Radiotherapy 
planning internal cohort same day 

Koh H65 Treatment Therapy 
planning internal cohort Unclear 

Koike Y66 Treatment Radiotherapy 
planning TCIA cohort Unclear 

Ladefoged 
CN67 Diagnosis Attenuation 

correction internal cohort less than 8 months 

Lan H68 Diagnosis Diagnosis ADNI random Unclear 

Lei Y70 Treatment Radiotherapy 
planning internal cohort Unclear 

Lei Y69 Treatment Radiotherapy 
planning internal cohort Unclear 



First author Clinical 
purpose 

Purpose 
category Database name 

Case-cohort, 
consecutive, or case-
control sample 

Timing between source 
image and ground 
truth image 

Li G71 Treatment Radiotherapy 
planning internal cohort Unclear 

Li W72 Treatment Radiotherapy 
planning internal unclear Unclear 

Li Y73 Treatment Radiotherapy 
planning internal cohort Unclear 

Li Y74 
No specific 
clinical 
purpose 

Image 
translation internal cohort Unclear 

Liu F75 Diagnosis Attenuation 
correction internal stroke cohort same day 

Liu F76 Treatment Radiotherapy 
planning internal 

stroke cohort for 
training, cancer cohort 
for testing 

same day 

Liu H78 Diagnosis 

Amyloid 
burden 
quantificatio
n 

internal cohort simultaneously 

Liu H77  Diagnosis 

Amyloid 
burden 
quantificatio
n 

internal cohort simultaneously 

Liu M79 Treatment Radiotherapy 
planning SZSPH dataset unclear Unclear 

Liu X80 Treatment Radiotherapy 
planning internal cohort Unclear 

Maspero 
M81 Treatment Radiotherapy 

planning internal cohort within 35 days, but one 
outlayer at 521 days 

Nehra R82 Treatment Radiotherapy 
planning ADNI cohort N/A 

Neppl S83 Treatment Radiotherapy 
planning internal cohort Unclear 

Nie D84 Treatment Radiotherapy 
planning ADNI cohort Unclear 

Nie D85 Treatment Radiotherapy 
planning ADNI cohort Unclear 

Nijskens L86 Treatment Radiotherapy 
planning internal cohort within 1.5 months 

Pan Y87 Diagnosis Alzheimer’s 
classification ADNI-1 and ADNI-2 cohort Unclear 

Prokopenko 
D88 Treatment Radiotherapy 

planning 

TCIA CPTAC, Head-
and-neck cancer dataset, 
internal (internal split for 
train and test) 

cohort N/A 

Qin J89 Prognosis 
MRI-only 
Glioma 
management 

TCIA ACRIN-FMISO-
Brain cohort 1-7 days 

Ranjan A90 Treatment Radiotherapy 
planning Atlas project cohort 1-5 days 

Reinhold 
JC91 

No specific 
clinical 
purpose 

Image 
translation internal healthy cohort Unclear 

Reinhold 
JC92 

Segmentati
on Segmentation internal healthy cohort Unclear 

Rubin J93 Segmentati
on 

Stroke lesion 
identification ISLES2018  stroke cohort within 3 hours 

Sanaat A94 
No specific 
clinical 
purpose 

Image 
translation internal cohort Unclear 



First author Clinical 
purpose 

Purpose 
category Database name 

Case-cohort, 
consecutive, or case-
control sample 

Timing between source 
image and ground 
truth image 

Shafai-
Erfani G95 Treatment Radiotherapy 

planning internal cohort Unclear 

Singh M96 Treatment Radiotherapy 
planning internal cohort Unclear 

Soltanpour 
M97 

Segmentati
on 

Stroke lesion 
identification internal cohort Unclear 

Spuhler 
KD98 Diagnosis Attenuation 

correction internal cohort Unclear 

Stimpel B99 Treatment Interventiona
l imaging internal cohort Unclear 

Sun B100 Treatment Radiotherapy 
planning 

ABCs MICCAI 2020 
challenge dataset cohort N/A 

Sun H101 Diagnosis Diagnosis ADNI cohort similar dates 
Takamiya 
K102 Treatment Radiotherapy 

planning internal cohort Unclear 

Takita H103 Diagnosis, 
Prognosis 

Diagnosis, 
Prognosis of 
glioma 

internal, TCIA cohort within 1 month 

Tang B12 Treatment Radiotherapy 
planning internal cohort same day 

Tao L104 Diagnosis Attenuation 
correction internal cohort Unclear 

Wang C105 Treatment Radiotherapy 
planning internal cohort 

same day for initial CT, 
3 days or less for 
replanning CT 

Wang C106 Treatment Radiotherapy 
planning internal cohort 

same day for initial CT, 
3 days or less for 
replanning CT 

Wang CC107 Treatment Radiotherapy 
planning internal cohort Unclear 

Wang J108 Treatment Radiotherapy 
planning internal cohort less than 2 days 

Wang J109 Treatment Radiotherapy 
planning internal cohort N/A 

Wang J110 Treatment Radiotherapy 
planning internal cohort less than one month 

Wang J111 
No specific 
clinical 
purpose 

Image 
translation Han (2017) selected cohort of 1/3 

of dataset Unclear 

Wei W112 Diagnosis 
MRI-only 
MS 
classification 

internal age-matched case-
control Unclear 

Wolterink 
J113 Treatment Radiotherapy 

planning internal cohort same day 

Xiang L114 Treatment Radiotherapy 
planning ADNI cohort Unclear 

Xu R115 Treatment Radiotherapy 
planning internal cohort N/A 

Yang H116 Registration Registration internal healthy cohort Unclear 

Yang H117 Treatment Radiotherapy 
planning internal cohort Unclear 

Zhang J118 Diagnosis Alzheimer’s 
classification ADNI cohort Unclear 

Zhao S119 Treatment Radiotherapy 
planning 

internal, model pre-
trained on RIRE cohort within 1 week 

  



Supplementary table 5. CLAIM adherence per clinical purpose 
 

 Medicine Engineering 
Clinical purpose N 

CLAIM 
score N 

CLAIM 
score 

Diagnosis 19 75% 8 69% 
Prognosis 2 74% 0  
Registration 1 67% 2 75% 
Segmentation 2 69% 6 58% 
Treatment 37 73% 19 63% 
No specific clinical purpose 4 70% 3 65% 
N: number of studies. 



Supplementary table 6. CLAIM adherence per criteria excluding conference publications 
 

   
Medically-focused Journal 

publications (N=61)  
Engineering-focused Journal 

publications (N=11) P-value 

 Crit
eria   Yes No N/A % 

adherence   Yes No N/A % 
adherence   

TITLE / 
ABSTRACT 

1  60 1 0 98%  9 2 0 82% 0.0590 
2  61 0 0 100%  11 0 0 100% 1.0000 

INTRO-
DUCTION 

3  61 0 0 100%  11 0 0 100% 1.0000 
4  61 0 0 100%  11 0 0 100% 1.0000 

METHODS 

5  19 42 0 31%  0 11 0 0% 0.0307 
6  61 0 0 100%  11 0 0 100% 1.0000 
7  61 0 0 100%  10 1 0 91% 0.1528 
8  20 41 0 33%  0 11 0 0% 0.0279 
9  55 6 0 90%  9 2 0 82% 0.5990 

10  10 0 51 100%  0 0 11 100% 1.0000 
11  60 1 0 98%  10 1 0 91% 0.2840 
12  5 56 0 8%  0 11 0 0% 1.0000 
13  4 57 0 7%  0 11 0 0% 1.0000 
14  61 0 0 100%  11 0 0 100% 1.0000 
15  8 0 53 100%  0 0 11 100% 1.0000 
16  3 6 52 90%  0 0 11 100% 0.5812 
17  7 2 52 97%  0 0 11 100% 1.0000 
18  1 8 52 87%  0 0 11 100% 0.3439 
19  1 60 0 2%  0 11 0 0% 1.0000 
20  59 1 1 98%  10 1 0 91% 0.2840 
21  53 7 1 89%  8 3 0 73% 0.1740 
22  60 1 0 98%  11 0 0 100% 1.0000 
23  48 13 0 79%  7 4 0 64% 0.2754 
24  29 32 0 48%  8 3 0 73% 0.1909 
25  53 7 1 89%  11 0 0 100% 0.5854 
26  58 3 1 95%  11 0 0 100% 1.0000 
27  0 0 61 100%  0 0 11 100% 1.0000 
28  58 3 0 95%  11 0 0 100% 1.0000 
29  36 25 0 59%  3 8 0 27% 0.0972 
30  25 36 0 41%  3 8 0 27% 0.5108 
31  43 18 0 70%  8 3 0 73% 1.0000 
32  6 55 0 10%  0 11 0 0% 0.5812 

RESULTS 

33  2 59 0 3%  0 11 0 0% 1.0000 
34  21 40 0 34%  0 11 0 0% 0.0269 
35  61 0 0 100%  11 0 0 100% 1.0000 
36  6 1 54 98%  0 0 11 100% 1.0000 
37  19 42 0 31%  1 10 0 9% 0.2704 

DISCUSSION 38  33 28 0 54%  4 7 0 36% 0.3378 
39  57 4 0 93%  9 2 0 82% 0.2258 

OTHER 
40  2 4 55 93%  0 1 10 91% 0.5748 
41  26 0 35 100%  4 0 7 100% 1.0000 
42   47 14 0 77%   10 1 0 91% 0.4387 

Bold indicates significance.  



Supplementary table 7. CLAIM adherence per purpose group 
 

 Medicine Engineering 

Purpose group N CLAIM score N CLAIM score 

Alzheimer’s classification 2 0.655 2 0.750 

Attenuation correction 12 0.752 2 0.655 

CT-based radiotherapy planning 0  3 0.667 

MRI-only Glioma management 2 0.762 0  

MRI-only MS classification 1 0.833 0  

MRI-only radiotherapy planning 34 0.737 15 0.627 

Other 10 0.712 8 0.667 

Registration 1 0.667 2 0.750 

Segmentation 0  3 0.659 

Stroke lesion identification 2 0.690 3 0.508 
N: number of studies. MS: Multiple sclerosis 
 
  



Supplementary table 8. PROBAST adherence results per question 
 

 % Yes or Probably Yes (low risk of bias) 

 

Medically-
focused  

Engineering-
focused  P-value 

 PROBAST 
question (N=64) (N=38)  

1.1 100% 87% 0.006 
1.2 28% 13% 0.0919 
4.1 11% 5% 0.4781 
4.8 13% 3% 0.1482 
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