
ON-LINE APPENDIX
Overview of Convolutional Neural Networks
CNNs are an adaption of the traditional artificial neural network

architecture whereby banks of 2D convolutional filter parameters

and nonlinear activation functions act as a mapping function to

transform a multidimensional input image into a desired output.1

The banks of 2D convolutional operation are defined by

Cl � �
k

xkWkl � bl,

where the lth convolutional output Cl is the result of convolution

between the kth input feature map xk, and the lth subparameters

wkl and bl are the lth additive bias terms. Because each convolu-

tional layer acts on a total of k input feature maps, each parameter

of size i � j consists of a total of i � j � k �l parameters, in which

l is the number of output feature maps.

Each convolutional operation is then followed by a nonlinear

activation function, �. In this study, the rectified linear activation

function was used, given well-documented advantages, including

stable gradients at the extreme values of optimization.2 The recti-

fied linear operation is defined simply by

xl � ��Cl� � max(Cl, 0),

where the lth activation map xl represents the convolutional out-

put Cl described above with the threshold at zero. Stacking serial

convolutional and nonlinear activation functions allows a CNN

to model high-order complex feature representations in a math-

ematically efficient form.

Convolutional Neural Network: Architectural Details
A customized CNN based on the popular ResNet was designed for

classification of mutation status, comprising 4 residual blocks

(On-line Figure). Batch normalization is used between the con-

volutional and rectified linear layers to limit drift of layer activa-

tions during training.3 Dropout at 50% was applied to all con-

volutional and fully connected layers to limit overfitting and

add stochasticity to the training process.4,5 Feature maps were

downsampled from the previous layer by convolutions with a

stride length of 2 instead of max pooling, thus allowing the

network to learn downsampling parameters and facilitating

preservation of gradients during backpropagation.6 The num-

ber of activation channels in deeper layers was progressively

increased from 8 to 16 to 32 to 64, reflecting increased feature

complexity. The final single-dimensional feature vector was

obtained through use of a global average pool applied to the

penultimate 4 � 4 � 64 convolutional feature map instead of

implementing a costly, high-parameter intermediate fully con-

volutional layer.

Final classification error was determined using a softmax

cross-entropy loss function, defined by

y � ��
l

�xlc � log �
d � 1

D

exld�,

where the loss, y, is calculated by subtracting the lth activation

map of the ground truth class, c, with the sum of the softmax

normalized (exponential function) values of the remaining class

dimensions, D.

Data Augmentation
Real-time data augmentation was applied to all input images dur-

ing the training process. This included the following: 1) addition

of a random offset i on the interval of (�0.5 and 0.5) to the whole

image; 2) arbitrary removal of an entire channel within the

input in 50% of training cases; and 3) application of a random

3 � 3 affine transformation matrix independently to each in-

put channel, resulting in stochastic application of image scal-

ing, rotation, translation, and shear. “Channels” refer to 1 of

the 4 input modalities (ie, T2, FLAIR, and so forth). Given a 2D

affine matrix,

� s1 t1 r1

t2 s2 r2

0 0 1
� ,

the random affine transformation was initialized with random

uniform distributions of interval s1, s2 � (0.8, 1.2), t1, t2 � (�0.3,

0.3), and r1, r2 � (�16, 16).

Implementation Details
Training was implemented using the Adam optimizer, an algo-

rithm for first-order gradient-based optimization of stochastic

objective functions, based on adaptive estimates of lower-order

moments.7 Parameters were initialized using the heuristic de-

scribed by He et al.8 L2 regularization was implemented to pre-

vent over-fitting of data by limiting the squared magnitude of the

convolutional weights. To account for training dynamics, the

learning rate was annealed and the mini-batch size is increased

whenever training loss plateaus. Furthermore a normalized

gradient algorithm was employed to allow for locally adaptive

learning rates that adjust according to changes in the input

signal.9 Software code for this study was written in Python 3.5

using the open-source TensorFlow r1.0 library (Apache 2.0

license).10 Experiments were performed on a GPU-optimized

workstation with a single NVIDIA GeForce GTX Titan X

(12GB, Maxwell architecture).
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ON-LINE FIGURE. A, Summary of residual neural network architec-
ture. Four residual blocks are used, subsampling the feature map 3
times through convolutions with a stride of 2 (demarcated by /2
in the figure). B, Each residual block consists of 2 serial 3 � 3 convo-
lutional blocks; the latter is mapped to the former via an additional
operation. C, Each convolutional block consists of a 3 � 3 convolu-
tion, batch normalization, a rectified linear nonlinearity, and 50%
drop-out.
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