## **Online Figures and Tables**

# **Online Figures**

**Online Figure 1:** Search strategy used on bibliographic databases.

Online Figure 2: Forest plot of highest AUC of every study in validation and meta-analysis.

Online Figure 3: Performance of radiologists versus, and with, ML models.

## **Online Tables**

Online Table 1: Custom-built data extraction form.
Online Table 2: TRIPOD items and adherence indices.
Online Table 3: Pipeline characteristics of individual studies.
Online Table 4: Summary of aims and ML performance per study.
Online Table 5: Results of PROBAST risk of bias (ROB) assessment per domain.

Embase <1974 to 2021 January 29> 1 exp Artificial Intelligence/ 45007 2 machine learning/ 37007 3 deep learning/ 12393 4 ((artificial\* or machine\* or deep\*) adj3 (intelligence or learning)).tw,kw. 73708 5 Al.ti,ab. 39008 6 exp computer assisted diagnosis/ 1169775 7 computer\* assist\* diagnosis.tw,kw. 937 8 radiomics/ 1903 9 radiomic\*.tw,kw. 4867 10 or/1-9 1305625 11 exp nuclear magnetic resonance imaging/ 1001848 12 (Magnetic Resonance Imag\* or MR-Imag\* or MR Imag or MRI\* or NMR).tw,kw. 882389 13 11 or 12 1278307 14 exp glioma/ 139715 15 glioma\*.tw,kw. 84577 16 (glial adj2 (tumor\* or tumour\*)).tw,kw. 3616 17 (glioblastoma\* or astrocytoma\* or astrocytic glioma\* or astroglioma).tw,kw. 77347 18 or/14-17 165100 19 10 and 13 and 18 9560 20 limit 19 to yr="2020 - 2022" 771

Ovid MEDLINE(R) ALL <1946 to January 29, 2021> 1 exp Artificial Intelligence/ 106412 2 ((artificial\* or machine\* or deep\*) adj3 (intelligence or learning)).tw,kw. 55350 3 Al.ti,ab. 28603 4 exp Image Interpretation, Computer-Assisted/ 551508 5 computer\* assist\* diagnosis.tw,kw. 626 6 radiomic\*.tw,kw. 3204 7 or/1-6 706556 8 exp Magnetic Resonance Imaging/ 465045 9 (Magnetic Resonance Imag\* or MR-Imag\* or MR Imag or MRI\*).tw,kw. 435821 10 8 or 9 625065 11 exp Glioma/ 85314 12 glioma\*.tw,kw. 60258 13 (glial adj2 (tumor or tumour)).tw,kw. 831 14 (glioblastoma\* or astrocytoma\* or astrocytic glioma\* or astroglioma).tw,kw. 51784 15 or/11-14 115828 16 7 and 10 and 15 4493 17 limit 16 to yr="2020 - 2021" 260

#### **Cochrane CENTRAL (trials)**

ID Search Hits #1 MeSH descriptor: [Artificial Intelligence] explode all trees 1040 #2 (artificial\* OR machine\* OR deep\*) AND (intelligence OR learning) 3131 #3 AI 7937 #4 MeSH descriptor: [Image Processing, Computer-Assisted] explode all trees 3582
#5 computer\* assist\* diagnosis 6489
#6 radiomic\* 210
#7 #1 OR #2 OR #3 OR #4 OR #5 OR #6 20843
#8 MeSH descriptor: [D008279] explode all trees 0
#9 Magnetic Resonance Imag\* OR MR-Imag\* OR MR Imag OR MRI\* OR NMR 36332
#10 #8 OR #9 36332
#11 MeSH descriptor: [Glioma] explode all trees 1197
#12 glioma\* 1792
#13 (glial AND (tumor OR tumour)) 70
#14 glioblastoma\* OR astrocytoma\* OR astrocytic glioma\* OR astroglioma 2432
#15 #11 OR #12 OR #13 OR #14 3580
#16 #7 AND #10 AND #15 with Publication Year from 2020 to 2021, in Trials 2

### Web of Science

# 13 235 #12 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=2020-2021

### # 12

711

#### #11 AND #7 AND #6

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

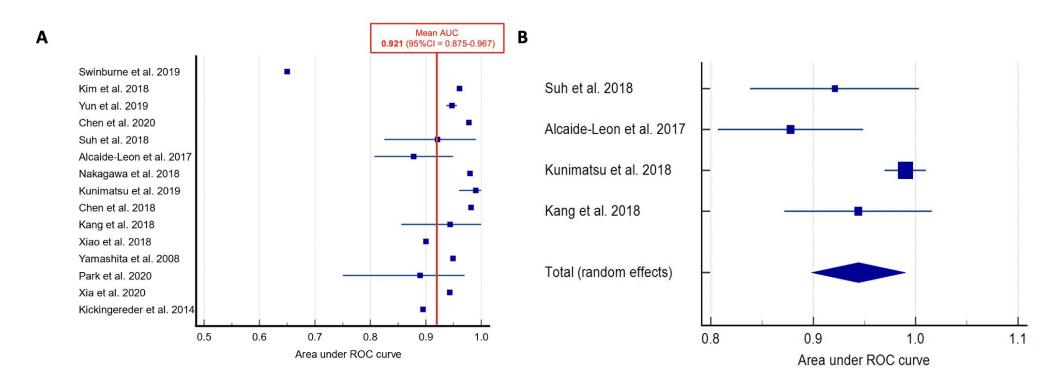
#### # 11

132,043 #10 OR #9 OR #8 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

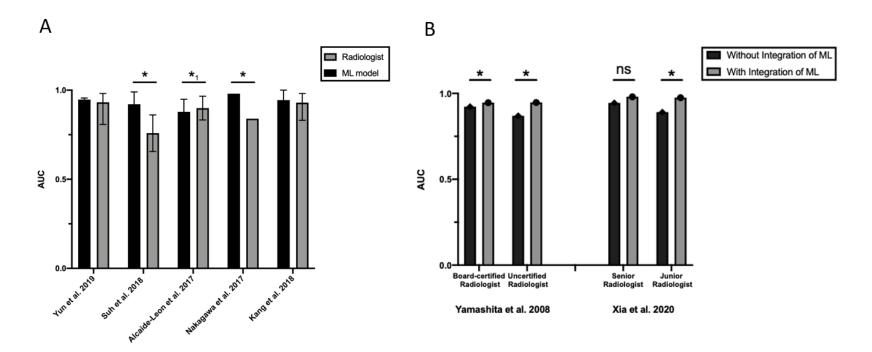
### # 10

75,253 TS=(glioblastoma\* or astrocytoma\* or astrocytic glioma\* or astroglioma) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

### #9


2,783 TS=(glial NEAR/2 (tumor\* or tumour\*)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

## # 8 91,055 TS=(glioma\*)


Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

#7 1,046,719 TS=(Magnetic Resonance Imag\* or MR-Imag\* or MR Imag or MRI\* or NMR) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years #6 331,970 #5 OR #4 OR #3 OR #2 OR #1 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years #5 4,619 TS=(radiomic\*) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC #4 6,845 TS=(computer\* assist\* diagnosis) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years #3 51,251 AB=(AI) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years #2 11,596 TI=(AI) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years #1 276,118 TS=((artificial\* or machine\* or deep\*) NEAR/3 (intelligence or learning)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

Online Figure 1. Search strategy used on bibliographic databases.



**Online Figure 2: A) Forest plot showing the highest AUC of every study in validation.** The center dot represents the highest AUC in a validation set reported by the authors in the study, and the whiskers the 95%CI (in cases where it was reported). The mean AUC among all the studies was 0.921 (95%CI = 0.875-0.967), and is represented by the vertical red line. **B) Forest plot of the meta-analysis.** The first four rows show the AUC and 95% CI achieved by the studies included in the meta-analysis. The last row shows the pooled AUC of 0.944 (95%CI = 0.918-0.98) calculated using a random-effects model.



Online Figure 3: A) Comparison of the performance of ML models with radiologists. Plotted are the best performing ML model alongside the best performing radiologist in the same validation set. The top of the bar represents the mean AUC, and the whiskers the 95% CI (in cases where it was reported). B) Performance of radiologists before and after incorporation of ML pipeline in their decision process. Both studies compared experienced radiologists with their more novice counterparts. Xia et al. compared the performance of a single junior versus senior radiologist. Yamashita et al. reported and compared the average performance of several board-certified and uncertified radiologists. \*= Significant difference (p<0.05) was reported by the authors of the study.

 $*_1$  = Alcaide-Leon et al. reported that ML was significantly non inferior to radiologists.

ns= difference of mean AUC was reported as being not significant (p>0.05).

Sheet 1 (Pipeline characteristics of individual studies):

| Category         | Information                            | Explanation                                                    |  |  |  |  |
|------------------|----------------------------------------|----------------------------------------------------------------|--|--|--|--|
| General          | Title                                  | Enter title of study.                                          |  |  |  |  |
| information      | Author                                 | Enter name of first author.                                    |  |  |  |  |
| mormation        | Year                                   | Enter year of publication.                                     |  |  |  |  |
|                  | Total number of patients               | Enter the total number (#) of patients used in the study, both |  |  |  |  |
|                  |                                        | for training and validation.                                   |  |  |  |  |
|                  | Fraction of patients used for training | Number of patients used for training divided by total # of     |  |  |  |  |
|                  |                                        | patients used in the study.                                    |  |  |  |  |
|                  |                                        | If only k-fold-cross-validation, specify k.                    |  |  |  |  |
|                  | Fraction of patients used testing      | Number of patients used for testing divided by total # of      |  |  |  |  |
|                  |                                        | patients used in the study.                                    |  |  |  |  |
|                  |                                        | If only k-fold-cross-validation, specify k.                    |  |  |  |  |
| Dataset          | Was external validation used?          | Enter either "Yes" or "No".                                    |  |  |  |  |
| characteristics  |                                        | If "Yes", then specify if geographical or temporal external    |  |  |  |  |
|                  |                                        | validation.                                                    |  |  |  |  |
|                  | Glioma/PCNSL ratio                     | = #Patients with glioma / #Patients with PCNSL.                |  |  |  |  |
|                  | Immune status of PCNSL patients        | Specify whether included PCNSL patients are                    |  |  |  |  |
|                  |                                        | immunosuppressed (IS) or immunocompetent (IC).                 |  |  |  |  |
|                  |                                        | If information not available note "Not specified".             |  |  |  |  |
|                  | Source of data                         | - private single center,                                       |  |  |  |  |
|                  |                                        | - private multi-center,                                        |  |  |  |  |
|                  |                                        | - public dataset (e.g BraTS, TCIA).                            |  |  |  |  |
| Tumor and        | Tumor types studied                    | List the different tumor types studied.                        |  |  |  |  |
| Ground-Truth     |                                        | Specify the type of glioma.                                    |  |  |  |  |
| Tumor and        | Ground-truth diagnosis                 | Specify the method for ground-truth diagnosis of glioma and    |  |  |  |  |
| Ground-Truth     |                                        | PCNSL, and what proportion of patients were diagnosed with     |  |  |  |  |
|                  |                                        | that method:                                                   |  |  |  |  |
| Machine Learning |                                        | (E.g.: "Histopathology (100%)")                                |  |  |  |  |
| characteristics  | Overall type of Machine Learning       | Specify whether                                                |  |  |  |  |

|                  |                                      | - classical Machine Learning                                  |
|------------------|--------------------------------------|---------------------------------------------------------------|
|                  |                                      | - Deep Learning                                               |
|                  |                                      | - both                                                        |
|                  | Supervision                          | Specify whether                                               |
|                  |                                      | - Unsupervised Learning                                       |
| Machine Learning |                                      | - Supervised Learning                                         |
| characteristics  | Classification algorithm             | Enter the classifier algorithm used                           |
|                  |                                      | (E.g.: Logistical Regression, Random Forest etc.).            |
|                  | Type of features used                | Specify the type of features by the algorithm.                |
|                  |                                      | (E.g.: "First order and texture features").                   |
|                  | Number of features used in the final | Specify the final number of features used in the final model. |
|                  | model                                |                                                               |
| Imaging          | Overall imaging technique            | Specify whether                                               |
| characteristics  |                                      | - MRI                                                         |
|                  |                                      | - CT                                                          |
|                  |                                      | - PET                                                         |
|                  | If MRI, which field strength?        | Specify whether                                               |
|                  |                                      | - 1.5 T                                                       |
|                  |                                      | - 3 T                                                         |
|                  |                                      | - 7 T                                                         |
|                  | If MRI, which sequence was used for  | Specify whether                                               |
|                  | features?                            | - T1c+                                                        |
|                  |                                      | - T1                                                          |
|                  |                                      | - T2                                                          |
|                  |                                      | - FLAIR                                                       |
| Imaging          |                                      | - DWI/ADC                                                     |
| characteristics  |                                      | - DSC                                                         |
|                  |                                      | - DCE                                                         |
|                  |                                      | - ASL                                                         |
|                  |                                      | - MRS                                                         |
|                  | If PET, which tracer?                | - Specify the tracer used                                     |

Sheet 2 (Model performance metrics with examples from Chen et al. 2020)

| Author,<br>Year | Classifier +<br>Feature<br>selection<br>method | Sequence of<br>features | Prediction<br>of | Training,<br>internal<br>validation,<br>external<br>validation? | AUC<br>(95%CI if<br>available) | Accuracy<br>(95%CI if<br>available) | Sensitivtiy<br>(95%CI if<br>available) | Specificity<br>(95%CI if<br>available) |
|-----------------|------------------------------------------------|-------------------------|------------------|-----------------------------------------------------------------|--------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|
| Chen, 2020      | LDA + RF                                       | T1c+,                   | GBM vs PCNSL     | Training                                                        | 0.97                           | 0.968                               | 0.935                                  | 0.99                                   |
| Chen, 2020      | LDA + RF                                       | T1c+,                   | GBM vs PCNSL     | Internal validation                                             | 0.964                          | 0.957                               | 0.906                                  | 0.99                                   |

**Online Table 1: Custom built data extraction form.** The custom-built form that we used for data extraction was developed in Microsoft Excel and consisted of two sheets. The first sheet collects the information on the pipeline characteristics of the individual studies, while the second sheet is useful for extracting individual model performance metrics for every test of every developed model by the researchers.

| Section -      | Item    |                                                                    | Adherence |
|----------------|---------|--------------------------------------------------------------------|-----------|
| Торіс          | number  | Explanation                                                        | index(%)  |
|                | Item 1  | Identify the study as developing and/or validating a               | 0         |
| Title          |         | multivariable prediction model, the target population, and the     |           |
|                |         | outcome to be predicted.                                           |           |
|                | Item 2  | Provide a summary of objectives, study design, setting,            | 0         |
| Abstract       |         | participants, sample size, predictors, outcome, statistical        |           |
|                |         | analysis, results, and conclusions.                                |           |
|                | Item 3a | Explain the medical context (including whether diagnostic or       | 78.3      |
|                |         | prognostic) and rationale for developing or validating the         |           |
| Background     |         | multivariable prediction model, including references to existing   |           |
| and Objectives |         | models.                                                            |           |
|                | Item 3b | Specify the objectives, including whether the study describes the  | 100       |
|                |         | development or validation of the model or both.                    |           |
|                | Item 4a | Describe the study design or source of data (e.g., randomized      | 82.6      |
| Methods –      |         | trial, cohort, or registry data), separately for the development   |           |
| Source of data |         | and validation data sets, if applicable.                           |           |
| Source of data | Item 4b | Specify the key study dates, including start of accrual; end of    | 78.3      |
|                |         | accrual; and, if applicable, end of follow-up.                     |           |
|                | Item 5a | Specify key elements of the study setting (e.g., primary care,     | 60.9      |
| Methods –      |         | secondary care, general population) including number and           |           |
| Participants   |         | location of centers.                                               |           |
|                | Item 5b | Describe eligibility criteria for participants.                    | 65.2      |
|                | Item 5c | Give details of treatments received, if relevant.                  | 87        |
| Methods –      | Item 6a | Clearly define the outcome that is predicted by the prediction     | 100       |
| Outcome        |         | model, including how and when assessed.                            |           |
|                | Item 6b | Report any actions to blind assessment of the outcome to be        | 100       |
|                |         | predicted.                                                         |           |
|                | Item 7a | Clearly define all predictors used in developing or validating the | 87        |

| Methods –      |          | multivariable prediction model, including how and when they       |                       |
|----------------|----------|-------------------------------------------------------------------|-----------------------|
| Predictors     |          | were measured.                                                    |                       |
|                | Item 7b  | Report any actions to blind assessment of predictors for the      | 0                     |
|                |          | outcome and other predictors.                                     |                       |
| Methods –      | Item 8   | Explain how the study size was arrived at.                        | 47.8                  |
| Sample size    |          |                                                                   |                       |
| Methods –      | Item 9   | Describe how missing data were handled (e.g., complete case       | 34.8                  |
| Missing data   |          | analysis, single imputation, multiple imputation) with details of |                       |
| Missing data   |          | any imputation method.                                            |                       |
| Methods –      | Item 10a | Describe how predictors were handled in the analyses.             | 56.5                  |
| Statistical    | Item 10b | Specify type of model, all model-building procedures (including   | 13                    |
| analysis       |          | any predictor selection), and method for internal validation.     |                       |
| methods        | Item 10d | Specify all measures used to assess model performance and, if     | 0                     |
| methods        |          | relevant, to compare multiple models.                             |                       |
| Methods – Risk | Item 11  | Provide details on how risk groups were created, if done.         | Not applicable in any |
| groups         |          |                                                                   | study.                |
|                | Item 13a | Describe the flow of participants through the study, including    | 73.9                  |
|                |          | the number of participants with and without the outcome and, if   |                       |
|                |          | applicable, a summary of the follow-up time. A diagram may be     |                       |
| Results –      |          | helpful.                                                          |                       |
| Participants   | Item 13b | Describe the characteristics of the participants (basic           | 0                     |
|                |          | demographics, clinical features, available predictors), including |                       |
|                |          | the number of participants with missing data for predictors and   |                       |
|                |          | outcome.                                                          |                       |
| Decult         | Item 14a | Specify the number of participants and outcome events in each     | 100                   |
| Results –      |          | analysis.                                                         |                       |
| Model          | Item 14b | If done, report the unadjusted association between each           | 22.2                  |
| development    |          | candidate predictor and outcome.                                  | (Applicable in 21     |
|                |          |                                                                   | studies)              |

| Results –<br>Model<br>specification | Item 15a | Present the full prediction model to allow predictions for<br>individuals (i.e., all regression coefficients, and model intercept<br>or baseline survival at a given time point). | 4.3  |
|-------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| speemeuton                          | Item 15b | Explain how to use the prediction model.                                                                                                                                          | 17.4 |
| Results –<br>Model<br>performance   | Item 16  | Report performance measures (with confidence intervals) for the prediction model.                                                                                                 | 0    |
| Discussion –<br>Limitations         | Item 18  | Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).                                                                  | 91.3 |
| Discussion –<br>Interpretation      | Item 19b | Give an overall interpretation of the results considering<br>objectives, limitations, results from similar studies and other<br>relevant evidence.                                | 100  |
| Discussion -<br>Implications        | Item 20  | Discuss the potential clinical use of the model and implications for future research.                                                                                             | 78.3 |
| Other<br>information                | Item 22  | Give the source of funding and the role of the funders for the present study.                                                                                                     | 13   |

Online Table 2: TRIPOD items for a development model, as described by Collins et al. These items are made up of several elements. An item is scored with the score of 1 if all elements pertaining to it are reported. If one element is not reported, then the whole item is scored as 0. The adherence index is calculated by the number of times the item was fully reported divided by the number of studies. Item 21 is not reported ("Provide information about the availability of supplementary resources, such as study protocol, web calculator, and data sets."), as it should not be included in overall scoring. Of important note: It is important that the reader recognizes that some elements in items with an overall adherence index of 0% were correctly reported but never all of them, leading to the overall low adherence. If the reader wishes to receive a breakdown for one of the TRIPOD elements, please reach out to the corresponding author and we will happily provide the information.

|                                           | Dataset cha                                       | aracteristics     | ;                                     |                                          |                           |                                 |                                           | Tumor and Gr                            | ound-truth                                   | ML c                | haracteristics               |                                                          |                                                                                    |                                                                           |
|-------------------------------------------|---------------------------------------------------|-------------------|---------------------------------------|------------------------------------------|---------------------------|---------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------------|---------------------|------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Study                                     | Number<br>of<br>patients<br>included <sup>1</sup> | Source<br>of data | Glioma<br>/<br>PCNSL<br>case<br>ratio | Immune<br>status of<br>PCNSL<br>patients | % used<br>for<br>training | % used for validation           | Was an<br>external<br>validation<br>done? | Tumor types<br>studied                  | Gold-<br>standard<br>for<br>diagnosis<br>(%) | ML<br>or<br>DL<br>? | Algorithms<br>studied        | Type of<br>features used                                 | Number of<br>features used<br>for ML model                                         | MRI <i>field</i><br>strength and<br>sequences<br>performed on<br>patients |
| Swinburne<br>et al. 2019 <sup>34</sup>    | 17                                                | Single<br>center  | 1.13                                  | Not<br>specified                         | validatio                 | ne-out-cross-<br>on (LOOCV)     | No                                        | GBM, CNSL,<br>Metastasis                | Pathology<br>(100%)                          | ML<br>and<br>DL     | SVM, MLP                     | Perfusion and<br>Diffusion<br>metrics                    | 1 feature per<br>unique<br>experiment (14<br>in total)                             | <i>3 T</i><br>T1c+, T2,<br>FLAIR,<br>DWI, DSC, DCE                        |
| Kim<br>et al. 2018 <sup>28</sup>          | 143                                               | Multi-<br>center  | 1.32                                  | Not<br>specified                         | 0.6                       | 0.4                             | Yes (Geo)                                 | GBM, typical<br>and atypical<br>PCNSL   | Pathology<br>(100%)                          | ML                  | SVM,<br>LogReg, RF           | Shape, First-<br>Order (FO),<br>Texture<br>matrices (TM) | 15                                                                                 | <i>3 T</i><br>T1c+, T2,<br>FLAIR,<br>DWI                                  |
| Yun<br>et al. 2019 <sup>41</sup>          | 195                                               | Multi-<br>center  | 1.57                                  | Not<br>specified                         | 0.75                      | 0.25                            | Yes (Geo)                                 | GBM,<br>PCNSL                           | Pathology<br>(100%)                          | ML<br>and<br>DL     | SVM, RF,<br>GLM, MLP,<br>CNN | FO, TM,<br>Wavelet<br>transformed<br>(WT)                | 10                                                                                 | <i>3 T</i><br>T1c+, DWI                                                   |
| Chen<br>et al. 2020 <sup>23</sup>         | 138                                               | Single<br>center  | 1.23                                  | Not<br>specified                         | 0.8                       | 0.2                             | No                                        | GBM,<br>PCNSL                           | Pathology<br>(100%)                          | ML                  | SVM,<br>LogReg,<br>LDA       | Shape, FO, TM                                            | Median 8<br>(1-16 per<br>selection<br>method)                                      | <i>3 T</i><br>T1c+                                                        |
| Suh<br>et al. 2018 <sup>33</sup>          | 77                                                | Single<br>center  | 0.43                                  | Not<br>specified                         |                           | oss-validation<br>x-validation) | No                                        | GBM (typical<br>and atypical),<br>PCNSL | Pathology<br>(100%)                          | ML                  | RF                           | Shape, FO,<br>TM, WT                                     | 80                                                                                 | <i>3 T</i><br>T1c+, T2,<br>FLAIR,<br>DWI                                  |
| Alcaide-Leon<br>et al. 2017 <sup>21</sup> | 106                                               | Single<br>center  | 2.03                                  | 32 IC<br>2 IS                            | 10-fold-                  | x-validation                    | No                                        | WHO III<br>glioma,<br>GBM,<br>PCNSL     | Pathology<br>(100%)                          | ML                  | SVM                          | FO, TM                                                   | Feature<br>number after<br>selection not<br>specified<br>(153 before<br>selection) | <i>1.5 T and 3 T</i><br>T1c+                                              |
| Nakagawa<br>et al. 2017 <sup>30</sup>     | 70                                                | Not<br>specified  | 1.8                                   | Not<br>specified                         | 10-fold-                  | -x-validation                   | No                                        | GBM,<br>PCNSL                           | Pathology<br>(100%)                          | ML                  | XGBoost,<br>uvLogReg         | FO, TM                                                   | 48                                                                                 | <i>3 T</i><br>T1c+, T2, DWI<br>DSC                                        |
| Kunimatsu<br>et al. 2019 <sup>29</sup>    | 76                                                | Single<br>center  | 2.62                                  | Only IC                                  | 0.79                      | 0.21                            | Yes<br>(Temp)                             | GBM,<br>PCNSL                           | Pathology<br>(100%)                          | ML                  | SVM                          | FO, TM                                                   | 4                                                                                  | 3 T<br>T1c+                                                               |

| Chen<br>et al. 2018 <sup>24</sup>      | 96  | Not<br>specified | 2.2  | Not<br>specified | 0.67                                                               | 0.33                 | No            | GBM,<br>PCNSL                                                     | Pathology<br>(100%) | ML | SVM                                     | Scale-<br>invariant-<br>feature-<br>transform<br>(SIFT)                   | 496 | Not reported<br>T1c+                                    |
|----------------------------------------|-----|------------------|------|------------------|--------------------------------------------------------------------|----------------------|---------------|-------------------------------------------------------------------|---------------------|----|-----------------------------------------|---------------------------------------------------------------------------|-----|---------------------------------------------------------|
| Kang<br>et al. 2018 <sup>26</sup>      | 196 | Multi-<br>center | 1.3  | Only IC          | 0.55                                                               | 0.45                 | Yes (Geo)     | GBM,<br>PCNSL<br>(typical,<br>atypical)                           | Pathology<br>(100%) | ML | NB, RF,<br>LDA, DT,<br>kNN,<br>AdaBoost | Shape, FO,<br>TM, WT                                                      | 55  | <i>3 T</i><br>T1c+, FLAIR,<br>DWI,<br>DSC               |
| Shrot<br>et al. 2019 <sup>32</sup>     | 53  | Single<br>center | 3.4  | Not<br>specified | LC                                                                 | DOCV                 | No            | GBM,<br>PCNSL,<br>Metastais,<br>Meningioma                        | Pathology<br>(100%) | ML | Binary tree<br>with SVM in<br>nodes     | Intensity,<br>Morphology,<br>Diffusion and<br>Perfusion<br>metrics        | 20  | <i>1.5 T and 3 T</i><br>T1c+, T2,<br>FLAIR,<br>DWI, DSC |
| Xiao<br>et al. 2018 <sup>36</sup>      | 82  | Single<br>center | 2.73 | Only IC          | 10-fold-                                                           | x-validation         | No            | GBM,<br>PCNSL                                                     | Pathology<br>(100%) | ML | SVM,<br>LogReg, RF,<br>NB               | FO, TM                                                                    | 3   | <i>1.5 T and 3 T</i><br>T1c+, T2                        |
| Yamashita<br>et al. 2008 <sup>39</sup> | 107 | Single<br>center | 7.92 | Not<br>specified | LC                                                                 | DOCV                 | No            | LGG, HGG,<br>PCNSL,<br>Metastasis                                 | Pathology<br>(100%) | DL | ANN<br>(MLP)                            | Clinical, MR<br>features (such<br>as oedema,<br>hemorrhage<br>etc.)       | 15  | 1.5 T<br>T1c+, T2                                       |
| Yamasaki<br>et al. 2013 <sup>37</sup>  | 40  | Not<br>specified | 1    | Not<br>specified | 0.05-0.95                                                          | 0.05-0.95            | No            | GBM<br>(typical,<br>atypical),<br>PCNSL<br>(typical,<br>atypical) | Pathology<br>(100%) | ML | SVM                                     | Luminance<br>histogram<br>range, ADC<br>value                             | 2   | Not reported<br>T1c+, DWI                               |
| Park<br>et al. 2020 <sup>31</sup>      | 259 | Multi-<br>center | 1.74 | Not<br>specified | 0.83                                                               | 0.17                 | Yes (Geo)     | GBM,<br>PCNSL,<br>Metastasis                                      | Pathology<br>(100%) | DL | CNN                                     | Temporal<br>Patterns of<br>Time-Signal<br>Intensity<br>Curves from<br>DSC | 9   | <i>3 T</i><br>T1c+, T2,<br>FLAIR,<br>DSC                |
| Xia<br>et al. 2020 <sup>35</sup>       | 240 | Single<br>center | 1.16 | Not<br>specified | Cross-<br>vendor<br>(cv):<br>0.621<br>Mixed<br>vendor<br>(mv): 0.8 | cv: 0-379<br>mv: 0.2 | Yes<br>(Temp) | GBM,<br>PCNSL                                                     | Pathology<br>(100%) | ML | LogReg,<br>GLM                          | Shape, FO,<br>TM, WT                                                      | 16  | <i>3 T</i><br>T1c+, FLAIR,<br>DWI                       |

| Bao<br>et al. 2019 <sup>22</sup>           | 20 | Single<br>center | 1.22 | Not<br>specified | 100 | 0     | No | Non-<br>hemorrhagic<br>GBM and<br>PCNSL | Pathology<br>(100%)                                                  | ML | LogReg | ADC-, and<br>CBV derived<br>metrics                 | 2 | <i>3 T</i><br>T1, T1c+, T2,<br>FLAIR,                                   |
|--------------------------------------------|----|------------------|------|------------------|-----|-------|----|-----------------------------------------|----------------------------------------------------------------------|----|--------|-----------------------------------------------------|---|-------------------------------------------------------------------------|
|                                            |    |                  |      |                  |     |       |    | TENSE                                   |                                                                      |    |        |                                                     |   | DWI, DSC                                                                |
| Eisenhut<br>et al. 2020 <sup>25</sup>      | 74 | Single<br>center | 1    | Not<br>specified | 100 | 0     | No | GBM,<br>PCNSL                           | Pathology<br>(100%)                                                  | ML | LogReg | ADC-, and<br>CBV derived<br>metrics                 | 5 | <i>1.5 T and 3 T</i><br>T1, T1c+, T2,<br>SWI,<br>FLAIR, DWI,            |
| Kickingereder<br>et al. 2014 <sup>27</sup> | 47 | Single<br>center | 1.47 | Only IC          |     | LOOCV | No | Atypical<br>GBM,<br>PCNSL               | Pathology<br>(100%)                                                  | ML | LogReg | ADC-, CBV-<br>and SWI-<br>derived metrics           | 3 | DSC<br>3 T<br>T1, T1c+, T2,<br>SWI, DWI, DSC                            |
| Wang<br>et al. 2011 <sup>43</sup>          | 42 | Single<br>center | 1.65 | IC and<br>IS     |     | LOOCV | No | GBM,<br>PCNSL                           | Pathology<br>(100%)                                                  | ML | DT     | CBV-, and<br>DTI- derived<br>metrics                | 5 | <i>3 T</i><br>T1, T1c+,<br>FLAIR,                                       |
| Zhou<br>et al. 2018 <sup>42</sup>          | 92 | Not<br>specified | 1.3  | Only IC          | 100 | 0     | No | GBM,<br>PCNSL                           | Pathology<br>(100%)                                                  | ML | LogReg | 18F-FDG PET<br>derived metrics                      | 2 | DTI, DSC<br>No MRI<br>performed<br>18F-FDG                              |
| Yamashita<br>et al. 2016 <sup>38</sup>     | 50 | Not<br>specified | 1.94 | Not<br>specified | 100 | 0     | No | GBM,<br>PCNSL                           | Pathology<br>(96%) and<br>clinico -<br>radiologic<br>al data<br>(4%) | ML | LogReg | IVIM, ADC-<br>and 18F-FDG<br>PET derived<br>metrics | 2 | PET/CT<br>3 T<br>T1, T1c+,<br>18F-FDG<br>PET/CT,<br>IVIM                |
| Yamashita<br>et al. 2013 <sup>40</sup>     | 56 | Not<br>specified | 1.94 | Not<br>specified | 100 | 0     | No | GBM.<br>PCNSL                           | Pathology<br>(93%) and<br>clinico -<br>radiologic<br>al data<br>(7%) | ML | LogReg | ASL-, ADC-<br>and 18F-FDG<br>PET derived<br>metrics | 2 | <i>3 T</i><br>T1, T1c+, T2,<br>FLAIR,<br>18F-FDG<br>PET/CT,<br>DWI, ASL |

<sup>1</sup>= Patients with tumors other than PCNSL or gliomas were not counted

**Online Table 3. Pipeline characteristics of individual studies.** Abbreviations: SVM=support vector machines; Geo = Geographical External Validation; MLP = Multilayer Perceptron Neural Network; LogReg = Logistic Regression; RF = Random Forests; GLM = Generalized Linear Model; CNN = Convolutional Neural Network; LDA = Linear Discriminant Analysis; XGBoost = eXtreme Gradient Boosting; uvLogReg = univariate Logistic Regression; Temp = Temporal External Validation; NB = Naïve Bayes; DT = Decision Tree; kNN = k-nearest neighbors; ANN = Artificial Neural Network; AdaBoost = Adaptive Boosting; IC= Immuno-competent; IS= Immuno-suppressed; DWI = Diffusion Weighted Imaging; DTI = Diffusion Tensor Imaging; DSC = Dynamic Susceptibility Contrast-enhanced imaging; ASL = Arterial Spin Labeling imaging; ADC = Apparent Diffusion Coefficient; CBV = Cerebral Blood Volume; SWI = Susceptibility Weighted Imaging; IVIM = Intravoxel Incoherent Motion MR imaging.

|                                        | Aim of the study                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          | Performance                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                  |                                                                                                                                                                                     | Training dataset                                                                                                                                                                                                                                                                                                                                                                                         | Internal validation                                                                                                                                                                                                                                                                                                                                 | External validation                                                                                                                                                                                                                                                                                                                                                                                                                |
| Swinburne<br>et al. 2019 <sup>34</sup> | Classification with the help<br>of ADC and perfusion<br>derived metrics                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                          | <b>SVM</b> : AUC of 0.63; Accuracy of 58.8 % <i>MLP</i> : AUC of 0.65; Accuracy of 64.7 %                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Kim<br>et al. 2018 <sup>28</sup>       | Classification using<br>conventional radiomic<br>features                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>SVM: AUC of 0.987; Accuracy of 94.1 %<br/>(Sensitivity = 93.8 %, Specificity = 94.4 %)</li> <li>Multivariate LogReg: AUC of 0.991; Accuracy of 94.1 % (Sens. = 95.8 %, Spec. = 91.7 %)</li> <li><i>RF</i>: AUC of 1; Accuracy of 100 %<br/>(Sensitivity and Specificity both 100 %)</li> </ul>                                             | Geographical External Validation:         SVM: AUC of 0.947; Accuracy of 91.2%         (Sensitivity= 93.1 %, Specificity = 89.29 %)         Multivariate LogReg: AUC of 0.961; Accuracy of         87.7%       (Sens.= 89.7%, Spec. = 85.7%)         RF: AUC of 0.953; Accuracy of 84.2 %       (Sensitivity = 96.6% and Specificity 71.43%)                                                                                       |
| Yun<br>et al. 2019 <sup>41</sup>       | Compare classification<br>performance of i)radiomics<br>features + conventional ML<br>ii) radiomics features +<br>MLP iii) radiologists, and<br>an iv) End-to-End CNN<br>classifier | GLM boosting: AUC ± 95%CI of 0.943 ± 0.927-<br>0.978<br>(Acc. = 94.3%, Sens = 96.3 % and Spec= 92.3 %)<br>SVM: AUC of 0.934<br>RF: AUC of 0.927<br><i>MLP</i> : AUC (95%CI) of 0.994 (0.994-0.995)<br>(Sens = 100 % and Spec= 100 %)<br>CNN: AUC (95%CI) of 0.973 (0.966-0.980)<br>(Sens = 100% and Spec = 94.5%)<br>Radiologist: AUC (95%CI) of 0.908 (0.755-<br>0.949) (Sens = 83.9% and Spec = 97.8%) | GLM boosting: AUC (95%CI) of 0.931 (0.914-<br>0.941)<br>(Sens = 98.8 % and Spec= 92.3 %)<br><i>MLP</i> : AUC (95%CI) of 0.991 (0.987-0.984)<br>(Sens = 100 % and Spec = 100 %)<br>CNN: AUC (95%CI) of 0.879 (0.856-0.902)<br>(Sens = 83.3% and Spec = 83.3%)<br>Radiologist: AUC (95%CI) of 0.875 (0.653-0.940)<br>(Sens = 83.3 % and Spec = 100 %) | Geographical External Validation         GLM boosting: AUC (95%CI) of 0.811 (0.795-0.835)         (Sens = 85.5 % and Spec= 78.9 %) <i>MLP</i> : AUC (95%CI) of 0.947 (0.937-0.956)         (Acc. = 85.7%, Sens = 92.9% and Spec= 82.1%)         CNN: AUC (95%CI) of 0.486 (0.468-0.503)         (Sens = 100 % and Spec = 35.7 %)         Radiologist: AUC (95%CI) of 0.932 (0.808-0.981)         (Sens = 89.7 % and Spec = 96.4 %) |
| Chen<br>et al. 2020 <sup>23</sup>      | Classification using<br>conventional radiomic<br>features                                                                                                                           | LDA: AUC of 0.992 and Accuracy of 99.3%         (Sens. = 99.6% and Spec. = 99%)         SVM: AUC of 0.957 and Accuracy of 96.2%         (Sens. = 99.8% and Spec. = 93.4%)         Multivariate LogReg: AUC of 0.959 and<br>Accuracy of 98.8% (Sens. = 94.2% and 98.1%)                                                                                                                                   | <ul> <li><i>LDA</i>: AUC of 0.978 and Accuracy of 97.9%<br/>(Sens. = 98.2% and Spec. = 97.6%)</li> <li>SVM: AUC of 0.959 and Accuracy of 96.4%<br/>(Sens. = 99.7% and Spec. = 94.3%)</li> <li>Multivariate LogReg: AUC of 0.975 and Accuracy<br/>of 96.6% (Sens. = 97.5% and 96.4%)</li> </ul>                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Suh<br>et al. 2018 <sup>33</sup>       | Classification of atypical<br>GBM and PCNSL using<br>conventional radiomic<br>features and comparison to<br>radiologists, and ADC 10 <sup>th</sup><br>percentile                    |                                                                                                                                                                                                                                                                                                                                                                                                          | <i>RF</i> : AUC (95%CI) of 0.921 (0.825-0.99), and<br>Accuracy of 89.6% (Sens. = 91.3%, Spec.=88.9%)<br><b>Radiologists</b> : AUC $\pm$ 95%CI of 0.759 $\pm$ 0.656-0.861<br>ADC <sub>p10</sub> <sup>1,2</sup> : AUC $\pm$ 95%CI of 0.684 $\pm$ 0.560-0.890                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Alcaide-Leon et al. 2017 <sup>21</sup> | Classification using conventional radiomic                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Radial-kernel SVM:</b> AUC (95%CI) of 0.878 (0.807-0.949)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                        | features and comparison to radiologists                     |                                           | <i>Radiologists:</i> AUC (95%CI) of 0.899 (0.833-0.966)                                                     |                                                                                                            |
|----------------------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Nakagawa<br>et al. 2018 <sup>30</sup>  | Classification using conventional radiomic                  |                                           | Multivariate XGBoost: AUC of 0.98                                                                           |                                                                                                            |
|                                        | features from and<br>comparison to radiologists             |                                           | Univariate LogReg on rCBV: AUC of 0.86                                                                      |                                                                                                            |
|                                        | ·                                                           |                                           | Radiologists: AUC of 0.84                                                                                   |                                                                                                            |
| Kunimatsu<br>et al. 2019 <sup>29</sup> | Classification using conventional radiomic                  |                                           | <i>Gaussian kernel SVM:</i> AUC (95%CI) of 0.99 (0.96-1), and Accuracy of 80%                               | Temporal External Validation                                                                               |
| ot ul. 2015                            | features                                                    |                                           |                                                                                                             | Linear and Gaussian SVM: Accuracy of 75%                                                                   |
|                                        |                                                             |                                           | <b>Linear kernel SVM:</b> AUC (95%CI) of 0.87 (0.77-0.95), and Accuracy of 70%                              |                                                                                                            |
| Chen                                   | Classification using SIFT                                   | SVM: AUC of 0.991 and Accuracy of 95.3%   | SVM: AUC of 0.982 and Accuracy of 90.6%                                                                     |                                                                                                            |
| et al. 2018 24                         | features                                                    | (Sens.= 85% and Spec.= 100%)              | (Sens.= 80% Spec.= 95.5%)                                                                                   |                                                                                                            |
| Kang<br>et al. 2018 <sup>26</sup>      | Comparison of classification using                          | Radial SVM: AUC of 0.968 on ADC features  | <i>RF</i> with ADC radiomics: AUC (95%CI) of 0.984 (0.945-1)                                                | Geographical External Validation                                                                           |
|                                        | radiomic features on<br>conventional and diffusion          | Linear SVM: AUC of 0.979 on ADC features  | (Sens.= 80.9%, Spec.=100%)                                                                                  | <i>RF</i> with ADC radiomics: AUC (95%CI) of 0.944 (0.856-1)                                               |
|                                        | MRI, and comparison to radiologists and 10 <sup>th</sup>    | RF: AUC of 0.983 on ADC features          | <b>LDA</b> on T1c+ radiomics: AUC (95%CI) of 0.968 (0.913-1)                                                | (Acc.= 88.6%, Sens.= 85.7%, Spec.=75%)                                                                     |
|                                        | percentile of ADC and 90 <sup>th</sup> percentile of CBV    | LDA: AUC of 0.982 on ADC features         | (Sens.= 85.7%, Spec.=95.2%)                                                                                 | <b>LDA</b> on T1c+ radiomics: AUC (95%CI) of 0.819 (0.617-0.967)                                           |
|                                        | <b>r</b>                                                    | <b>DT</b> : AUC of 0.927 on T1c+ features | <b>ADC<sub>10</sub><sup>1</sup></b> : AUC (95%CI) of 0.787 (0.633-0.898)<br>(Sens.= 95.2%, Spec.= 57.1%)    | (Acc.= 78.6% Sens.= 71.4%, Spec.=82.1%)                                                                    |
|                                        |                                                             | NB: AUC of 0.955 on ADC features          | <b>CBV</b> <sub>90</sub> <sup>1</sup> : AUC (95%CI) of 0.905 (0.774-0.973)                                  | <b>ADC</b> <sub>10</sub> <sup>1</sup> : AUC (95%CI) of 0.809 (0.683-0.901)<br>(Sens.= 75.9%, Spec.= 82.1%) |
|                                        |                                                             | kNN: AUC of 0.968 on ADC features         | (Sens. = 80.9%, Spec. = 90.5%)                                                                              |                                                                                                            |
|                                        |                                                             | AdaBoost: 0.979 on ADC features           | Radiologists : AUC (95%CI) of 0.908 (0.755-0.949)<br>(Sens.= 83.9% Spec.=97.8%)                             | Radiologists : AUC (95%CI) of 0.930 (0.831-0.981)<br>(Sens.= 89.7% Spec.=96.7%)                            |
| Shrot                                  | Classification with                                         |                                           | Binary hierarchical tree with SVM nodes:                                                                    |                                                                                                            |
| et al. 2019 <sup>32</sup>              | morphological features; and                                 |                                           | Accuracy for GBM of 95.7% and for PCNSL of                                                                  |                                                                                                            |
| 01 41. 2019                            | diffusion, and perfusion                                    |                                           | 93.6%.                                                                                                      |                                                                                                            |
|                                        | metrics                                                     |                                           | Pairwise classification achieved for PCNSL vs GBM                                                           |                                                                                                            |
|                                        |                                                             |                                           | Sens.= 100% and Spec.= 100%                                                                                 |                                                                                                            |
| Xiao<br>et al. 2018 <sup>36</sup>      | Classification using conventional radiomic                  |                                           | NB: AUC of 0.9, and Accuracy of 82%                                                                         |                                                                                                            |
| ct al. 2010                            | features                                                    |                                           | SVM: AUC of 0.87, and Accuracy of 88%                                                                       |                                                                                                            |
|                                        |                                                             |                                           | Trivariate LogReg:                                                                                          |                                                                                                            |
|                                        |                                                             |                                           | AUC of 0.85, and Accuracy of 84%                                                                            |                                                                                                            |
| Yamashita<br>et al. 2008 <sup>39</sup> | Classification using clinical and qualitative features, and |                                           | ANN (MLP): AUC of 0.949                                                                                     |                                                                                                            |
| et al. 2006                            | comparison to Radiologists                                  |                                           | Board-certified radiologsist:                                                                               |                                                                                                            |
|                                        |                                                             |                                           | Without ANN assistance $\rightarrow$ average AUC of 0.923<br>(A co. = 87.0%) Series = 80.8% Series = 00.2%) |                                                                                                            |
|                                        |                                                             |                                           | (Acc. = 87.9%, Sens.= 80.8%, Spec.= 90.3%).<br>With ANN assistance $\rightarrow$ average AUC of 0.946       |                                                                                                            |
|                                        |                                                             |                                           | with ANN assistance 7 average AUC of 0.946                                                                  |                                                                                                            |

|                                       |                                                                                                                         |                                                                                                                                                                                                                                        | (Acc. = 91.5%, Sens.= 86.8%, Spec.= 93.1%)<br>Difference was not sigificant                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                         |                                                                                                                                                                                                                                        | Precertification radiologists:<br>Without ANN assistance $\rightarrow$ average AUC of 0.87<br>(Acc. = 85.6%, Sens.= 75.6%, Spec.= 89%).<br>sWith ANN assistance $\rightarrow$ average AUC of 0.947<br>(Acc. = 92.1%, Sens.= 87.5%, Spec.= 93.7%)<br>Difference was significant |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Yamasaki<br>et al. 2013 <sup>37</sup> | Classification using ADC<br>and Luminance-range<br>histogram (LRH)<br>thresholding as features                          |                                                                                                                                                                                                                                        | SVM using ADC and LRH: Accuracy = 95.4%SVM using only LRH: Accuracy = 83.3%ADC thresholding alone: Accuracy = 66%                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       |                                                                                                                         |                                                                                                                                                                                                                                        | I DII thresholding along A courses - 75%                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Park<br>et al. 2020 <sup>31</sup>     | Classification using Time-<br>Signal Intensity Patterns<br>derived from DSC imaging<br>by Autoencoder Neural<br>Network | <i>CNN:</i> AUC (95% CI) of 0.921 (0.860-0.951)<br>(Sens.= 93.6%, Spec.= 81%)                                                                                                                                                          | LRH thresholding alone: Accuracy = 75%<br>CNN: AUC (95% CI) of 0.93 (0.821-0.983)<br>(Sens.= 85.7%, Spec.= 90.9%)                                                                                                                                                              | Geographical External Validation           CNN: AUC (95% CI) of 0.89 (0.75-0.97)           (Sens.= 95.2%, Spec.= 76.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Xia<br>et al. 2020 <sup>35</sup>      | Classification using<br>conventional radiomic<br>features, and cross-MRI-<br>vendor validation                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                | Temporal External Validation         Cross-vendor validation:         Single-sequence GLM: AUC of 0.937         (Acc.= 89%, Sens. = 87%, Spec.= 0.911)         Multivariate LogReg: AUC of 0.943         (Acc.= 91.2%, Sens.= 89.1%, Spec.= 93.3%)         Junior (Senior) Radiologist without assistance:         AUC of 0.891 (0.945), Acc.= 89% (94.5%), Sens.=         80.4% (91.3%), Spec.= 97.8% (97.8%)         Junior (Senior) Radiologist with assistance:         AUC of 0.975 (0.980), Acc.= 95.6% (95.6%), Sens.=         93.5% (93.5%), Spec.= 97.8% (97.8%)         No significant difference to mixed-vendor validation |
| Bao<br>et al. 2019 <sup>22</sup>      | Classification using nCBV-,<br>and ADC- derived metrics<br>in non-hemorrhagic tumors                                    | Bivariate LogReg: AUC of 0.969<br>(Sens.= 88.9%, Spec.= 90.9%)<br>nCBV <sub>mean</sub> <sup>1,2</sup> : AUC of 0.869<br>(Sens.= 72.7%, Spec.= 88.9%)<br>ADC <sub>p25</sub> <sup>1</sup> : AUC of 0.838<br>(Sens.= 72.7%, Spec.= 88.9%) |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Eisenhut                              | Classification using CBV-,                                                                                              | Bivariate LogReg: AUC of 1                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| et al. 2020 <sup>25</sup>             | and ADC- derived features                                                                                               | (Acc. = 100% Sens.= 100%, Spec.= 100%)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| <u></u>                                    |                                                                                                                    | T                                                                                                        |                                                                                                                                                                                        |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                            |                                                                                                                    | <b>rCBV<sup>1,2</sup>:</b> AUC of 0.93 (Acc.= 86%)                                                       |                                                                                                                                                                                        |  |
|                                            |                                                                                                                    | <b>ADC</b> <sub>max</sub> <sup>1,2</sup> : AUC of 0.847 (Acc.=80%)                                       |                                                                                                                                                                                        |  |
| Kickingereder<br>et al. 2014 <sup>27</sup> | Classification of only<br>atypical GBM vs typical                                                                  | ADCmax <sup>-,-</sup> : AUC 01 0.847 (Acc.=80%)                                                          | Trivariate LogReg on ADC, rCBV, and SWI:           Sensitivity of 96% for GBM (95% for PCNSL)                                                                                          |  |
|                                            | PCNSL using combination<br>of ADC-, rCBV-, and SWI-<br>derived metrics.                                            |                                                                                                          | <b>Univariate LogReg on ADC:</b> AUC of 0.895, and sensitivity of 82% for GBM (74% for PCNSL)                                                                                          |  |
|                                            |                                                                                                                    |                                                                                                          | <b>Univariate LogReg on rCBV</b> : AUC of 0.887, and sensitivity of 82% for GBM (74% for PCNSL)                                                                                        |  |
| Wang<br>et al. 2011 <sup>43</sup>          | Classification GBM,<br>PCNSL and Mets using a<br>two-level decision tree with<br>DTI- and DSC- derived<br>metrics. |                                                                                                          | <i>DT:</i><br>1 .Layer (GBM vs Non-GBM) AUC of 0.938<br>(Acc.= 89.6%, Sens.= 89%, Spec.=93%)<br>2. Layer (PCNSL vs. Metastasis) AUC for 0.909<br>(Acc.= 81.6%, Sens.= 77%, Spec.= 94%) |  |
| <u> </u>                                   |                                                                                                                    |                                                                                                          | Overall Accuracy: GBM 84.6%, PCNSL 75%                                                                                                                                                 |  |
| Zhou<br>et al. 2018 <sup>42</sup>          | Classification using 18F-<br>FDG PET/CT                                                                            | <i>Bivariate LogReg on SUV<sub>max</sub> and T/N ratio:</i><br>AUC of 0.923 (Sens.= 88.5%, Spec.= 82.7%) |                                                                                                                                                                                        |  |
|                                            |                                                                                                                    | SUV <sub>max</sub> <sup>1</sup> : AUC of 0.91<br>(Acc.= 84.6%, Sens.= 76.9%, Spec.= 92.3%)               |                                                                                                                                                                                        |  |
| Yamashita<br>et al. 2016 <sup>38</sup>     | Classification using IVIM-,<br>18F-FDG PET-, and<br>ADC <sub>min</sub> - derived features                          | <b>Bivariate LogReg on </b> f <sub>max</sub> and D <sub>min</sub> :<br>AUC of 0.936                      |                                                                                                                                                                                        |  |
|                                            |                                                                                                                    | <b>D</b> <sub>min</sub> <sup>1,2</sup> : AUC of 0.905<br>(Acc.= 83.3%, Sens.= 82.8%, Spec.= 84.6%)       |                                                                                                                                                                                        |  |
|                                            |                                                                                                                    | <b>SUV<sub>max</sub> <sup>1,3</sup>:</b> AUC of 0.857<br>(Acc.= 88.1%, Sens.= 89.7%, Spec.= 84.6%)       |                                                                                                                                                                                        |  |
|                                            |                                                                                                                    | <b>ADC</b> <sub>min</sub> <sup>1,2</sup> : AUC of 0.894<br>(Acc.= 83.3%, Sens.= 82.8%, Spec.= 84.6%)     |                                                                                                                                                                                        |  |
| Yamashita<br>et al. 2013 <sup>40</sup>     | Classification using ASL-,<br>ADC-, and DSC- derived<br>features.                                                  | <b>Bivariate LogReg using rTBF and ADC</b> <sub>min</sub> :<br>AUC of 0.706                              |                                                                                                                                                                                        |  |
|                                            | Teatures.                                                                                                          | <i>Absolute TBF</i> <sup>1,2</sup> : AUC 0.888<br>(Acc.= 83%, Sens.= 83.3%, Spec.= 82.9%)                |                                                                                                                                                                                        |  |
|                                            |                                                                                                                    | <b>SUV<sub>max</sub></b> <sup>1,3</sup> : AUC of 0.848<br>(Acc.= 83.8%, Sens.= 92.3%, Spec.= 79.2%)      |                                                                                                                                                                                        |  |
|                                            | selecting a cut-off and perf                                                                                       | <b>ADC</b> <sub>min</sub> <sup>1,2</sup> : AUC of 0.768<br>(Acc.= 77.8%, Sens.= 92.8%, Spec.= 79.2%)     |                                                                                                                                                                                        |  |

<sup>1</sup>= Assessed by selecting a cut-off and performing an ROC analysis <sup>2</sup>= Value was reported to be significantly higher in GBM compared to PCNSL (p < 0.05) <sup>3</sup>= Value was reported to be significantly higher in PCNSL compared to GBM (p < 0.05)

**Online Table 4: Summary of aims and ML performance per study.** The aims of every individual study are detailed in the first column. The performance columns show the best performance of every ML algorithm for every study and for every type of test (training, internal, or external validation). Best performance was assessed in reference to the AUC. The best performing model overall is highlighted in cursive font. In cases where performance of several radiologists was assessed, we report the results of the best-performing radiologist only. Only exception to this is the study by Yamashita et al. 2008, as they provided an average AUC. If the classification performance of single parameters (e.g SUV<sub>max</sub>, ADC<sub>min</sub>) were assessed without using ML, but alongside a ML-algorithm, we also included those performance metrics for completeness.

|             | Domain 1                    | Domain 2     | Domain 3    | Domain 4                | Overall <sup>3</sup> |
|-------------|-----------------------------|--------------|-------------|-------------------------|----------------------|
|             | (Participants) <sup>1</sup> | (Predictors) | (Outcomes)  | (Analysis) <sup>2</sup> |                      |
| High ROB    | 21.74% (n=5)                | 0%           | 0%          | 47.8% (n=11)            | 69.6% (n=16)         |
| Unclear ROB | 47.83% (n=11)               | 0%           | 0%          | 52.2% (n=12)            | 30.4% (n=7)          |
| Low ROB     | 30.43% (n=7)                | 100% (n=23)  | 100% (n=23) | 0%                      | 0%                   |

**Online Table 5: Results of PROBAST risk of bias (ROB) assessment per domain.** We performed a ROB assessment of the twenty-three studies included in our systematic review.

<sup>1</sup> = The seven studies that were deemed to have a low ROB in Domain 1 did so by appropriately reflecting the target population of interest by including immunosuppressed PCNSL patients<sup>23,45</sup> or explicitly including participants with atypical variants of tumors.<sup>28-30,35,39</sup> Among the five studies that were judged to have a high ROB related to the selection of participants, four either excluded immunosuppressed patients or excluded patients with certain atypical features<sup>24,31,38,44</sup> and one included patients with "CNS lymphoma", not specifying if perhaps secondary CNSL were intermixed in the dataset.<sup>36</sup> These factors pose a risk factor for bias, since the studied population might differ from the one the model is likely to be used, and the results might therefore not be generalizable. Due to reporting deficiencies, the ROB in this domain could not be determined for eleven studies.

 $^{2}$  = The two main reasons for why studies were deemed to have a high ROB in Domain 4 were i) an inappropriate high ratio of features-per-participant, and ii) using an inappropriate method for handling missing data, particularly the complete-case method". Among the eleven studies with high ROB, five studies had an inappropriately high number of predictors- (features-)to-participants ratio and used the inappropriate complete-case method for handling missing data.<sup>30,32,34,35,41</sup> Furthermore, three other studies had only an inappropriate high predictor number to participants ratio<sup>29,33,37</sup>, and other three only the inappropriate complete-case method for handling studies, the ROB in domain 4 could not be properly assessed since none reported any calibration measure or any information on the presence or missing data or the method to handle it.

 $^{3}$  = Overall, most studies were judged to have a high ROB, because of concerns in Domains 1 and 4. Due to the multiple reporting deficiencies (as assessed with the TRIPOD checklist), the remaining studies had an unclear ROB. Adherence to reporting standards is therefore strongly encouraged, since it is a prerequisite to successfully perform a risk of bias assessment.