Skip to main content
Log in

Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Mild or moderate hypothermia (>30°C) has been proposed for clinical use as a therapeutic option for achieving protection from cerebral ischaemia in brain injury patients. In this research, a theoretical model was developed to examine the brain temperature gradients during selective cooling of the brain surface after head injury. The head was modelled as a hemisphere consisting of several layers, representing the scalp, skull and brain tissue, respectively. The dimensions, physical properties and physiological characteristics for each layer, as well as the arterial blood temperature, were used as the input to the Pennes bioheat transfer equation to simulate the steady-state temperature distribution within the brain. Depending on the head surface temperature, a temperature gradient of up to 13°C exists in the brain tissue. The results have shown that the volumetric-averaged brain tissue temperature Tbt, avg for adults and infants can be 1.7 and 4.3°C, respectively, lower than the temperature of the arterial blood supplied to the brain tissue. The location where the probe should be placed to measure Tbt, avg was also determined by the simulation. The calculation suggests that the temperature sensor should be placed 7.5mm and 5.9 mm beneath the brain tissue surface for adults and infants, respectively, to monitor Tbt, avg continuously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barone, F. C., Feuerstein, G. Z., andWhite, R. F. (1997): ‘Brain cooling during transient focal ischaemia provides complete neuroprotection’,Neurosci. Biobehav. Rev.,21, pp. 31–44

    Article  Google Scholar 

  • Blinkov, S. A., andGlezer, I. I. (1968): ‘Human brain in figures and tables: a quantitative handbook’ (Plenum Press, New York, 1968)

    Google Scholar 

  • Clifton, G. L., Jiang, J. Y., andLyeth, B. G. (1991): ‘Marked protection by moderate hypothermia after experimental traumatic brain injury’,J. Cereb. Blood Flow Metab.,11, pp. 114–121

    Google Scholar 

  • Clark, R. S. B., Kochanek, P. M., Marion, D. W., Schiding, J. K., White, M., Palmer, A. M., andDeKosky, S. T. (1996): ‘Mild posttraumatic hypothermia reduces mortality after severe controlled cortical impart in rats’,J. Cereb. Blood Flow Metab.,16, pp. 253–261

    Google Scholar 

  • Dexter, F., andHinderman, B. J. (1994): ‘Computer simulation of brain cooling during cardiopulmonary bypass’,Ann. Thorac. Surg.,57, pp. 1171–1179

    Google Scholar 

  • Kolios, M. C., Worthington, A. E., Sherar, M. D., andHunt, J. W. (1998): ‘Experimental evaluation of two simple thermal models using transient temperature analysis’,Phys. Med. Biol.,43, pp. 3325–3340

    Article  Google Scholar 

  • Kuluz, J. W., Gregory, G. A., Yu, A. C. H., andChang, Y. (1992): ‘Selective brain cooling during and after prolonged global ischemia reduces cortical damage in rats’,Stroke,23, pp. 1792–1797

    Google Scholar 

  • Jiang, J. Y., Lyeth, B. G., Clifton, G. L., Jenkins, L. W., Hamm, R. J., andHayes, R. L. (1991): ‘Relationship between body and brain temperature in traumatically brain-injured rodents’,J. Neurosurg.,74, pp. 492–496

    Google Scholar 

  • Lyons, B. E., Samulski, T. V., Cox, R. S., andFessenden, P. (1989): ‘Heat loss and blood flow during hyperthermia in normal canine brain. I: empirical study and analysis’,Int. J. Hypertherm.,5, pp. 225–247

    Google Scholar 

  • Marion, D. W., Leonov, Y., Ginsberg, M., Katz, L. M., Kochanek, P. M., Lechleuthner, A., Nemoto, E. M., Obrist, W., Safar, P., Sterz, F., Tisherman, S. A., White, R. J., Xiao, F., andZar, H. (1996): ‘Resuscitative hypothermia’,Crit. Care Med.,24, pp. s81-s89

    Article  Google Scholar 

  • Marion, D. W. (1997): ‘Treatment of traumatic brain injury with moderate hypothermia’,N. Engl. J. Med.,336, pp. 540–546

    Article  Google Scholar 

  • Mellergard, P., Nordtroem, C.-H., andChristensson, M. (1990): ‘A method for monitoring intracerebral temperature in neurosurgical patients’,Neurosurgery,27, pp. 654–657

    Google Scholar 

  • Miyazawa, T., andHossmann, K.-A. (1992): ‘Methodological requirements for accurate measurements of brain and body temperature during global forebrain ischaemia of rat’,J. Cereb. Blood Flow Metab.,12, pp. 817–822

    Google Scholar 

  • Nelson, D. A., andNunneley, S. A. (1998): ‘Brain temperature and limits on transcranial cooling in humans: quantitative modeling results’,Eur. J. Appl. Physiol.,78, pp. 353–359

    Article  Google Scholar 

  • Ogura, K., Takayasu, M., andDacey, R. G. (1991): ‘Effects of hypothermia and hyperthermia on the reactivity of rat intracerebral arteriolesin vitro’,J. Neurosurg.,75, pp. 433–439

    Google Scholar 

  • Olsen, R. W., Hayes, L. J., Wissler, E. H., Nikaidoh, H., andEberhart, R. C. (1985): ‘Influence of hypothermia and circulatory arrest on cerebral temperature distributions’,ASME. J. Biomech. Eng.,107, pp. 354–360

    Google Scholar 

  • Pennes, H. H. (1948): ‘Analysis of tissue and arterial blood temperatures in the resting human forearm’,J. Appl. Physiol.,1, pp. 93–122

    Google Scholar 

  • Rumana, C. S., Gopinath, S. P., Uzura, M., Valadka, A. B., andRobertson, C. S. (1998): ‘Brain temperature exceeds systemic temperature in head-injured patients’,Crit. Care. Med.,26, pp. 562–567

    Google Scholar 

  • Samulski, T. V., Cox, R. S., Lyons, B. E., andFessenden, P. (1989): ‘Heat loss and blood flow during hyperthermia in normal canine brain. II: mathematical model’,Int. J. Hypertherm.,5, pp. 249–263

    Google Scholar 

  • Schwab, S., Spranger, M., Aschoff, A., Steiner, T., andHacke, W. (1997): ‘Brain temperature monitoring and modulation in patients with severe MCA infarction’,Neurology,48, pp. 762–767

    Google Scholar 

  • Sirimanne, E. S., Blumberg, R. M., Bossana, D., Gunning, M., Edwards, A. D., Gluckman, P. D., andWilliams, C. E. (1996): ‘The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischaemic brain injury in the infant rat’,Pediat. Res.,39, pp. 591–597

    Google Scholar 

  • Stone, J. G., Young, W. L., Smith, C. R., Solomon, R. A., Wald, A., Ostapkovich, N., andShrebnick, D. B. (1995): ‘Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed?’,Anesthesiology,82, pp. 344–351

    Google Scholar 

  • Stone, J. G., Goodman, R. R., Baker, K. Z., Baker, C. J., andSolomon, R. A. (1997): ‘Direct intraoperative measurement of human brain temperature’,Neurosurgery,41, pp. 20–24

    Article  Google Scholar 

  • Thoresen, M., andWyatt, J. (1997): ‘Keeping a cool head, posthypoxic hypothermia—an old idea revisited’,Acta Pediatr.,86, pp. 1029–1033

    Google Scholar 

  • Verlooy, J., Heytens, L., Veeckmans, G., andSelosse, P. (1995): ‘Intracerebral temperature monitoring in severely head injured patients’,Acta Neurochir (Wien),184, pp. 76–78

    Google Scholar 

  • Wass, C. T., Lanier, W. L., Hofer, R. E., Scheithauer, B. W., andAndrews, A. G. (1995): ‘Temperature changes of ≥1 °C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia’,Anesthesiology,83, pp. 325–335

    Google Scholar 

  • Wass, C. T., Waggoner, J. R., Cable, D. G., Schroeder, D. R., andLanier, W. L. (1998): ‘Selective convective brain cooling during normothermic cardiopulmonary bypass in dogs’,J. Thorac. Cardiovasc. Surg.,115, pp. 1350–1357

    Google Scholar 

  • Weinbaum, S., Xu, L. X., Zhu, L., andEkpene, A. (1997): ‘A new fundamental bioheat equation for muscle tissue. Part I: blood perfusion term’,ASME J. Biomech. Eng.,121, pp. 1–12

    Google Scholar 

  • Xu, X., Tikuisis, P., andGiesbrecht, G. (1999): ‘A mathematical model for human brain cooling during cold-water near-drowning’,J. Appl. Physiol.,86, pp. 265–272

    Google Scholar 

  • Zhu, L., andXu, L. X. (1999): ‘Evaluation of the effectiveness of transurethral radio frequency hyperthermia in the canine prostate: temperature distribution analysis’,ASME J. Biomech. Eng.,121, pp. 584–590

    Google Scholar 

  • Zhu, L. (2000): ‘Theoretical evaluation of contributions of both radial heat conduction and countercurrent heat exchange in selective brain cooling in humans’,Ann. Biomed. Eng.,28, pp. 269–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Diao, C. Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury. Med. Biol. Eng. Comput. 39, 681–687 (2001). https://doi.org/10.1007/BF02345442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345442

Keywords

Navigation