Skip to main content

Measuring the Absolute Water Content of the Brain Using Quantitative MRI

  • Protocol
  • First Online:
Book cover Magnetic Resonance Neuroimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 711))

Abstract

Methods for quantitative imaging of the brain are presented and compared. Highly precise and accurate mapping of the absolute water content and distribution, as presented here, requires a significant number of corrections and also involves mapping of other MR parameters. Here, either T 1 and T 2 * or T 2 is mapped, and several corrections involving the measurement of temperature, transmit and receive B 1 inhomogeneities and signal extrapolation to zero TE are applied. Information about the water content of the whole brain can be acquired in clinically acceptable measurement times (10 or 20 min). Since water content is highly regulated in the healthy brain, pathological changes can be easily identified and their evolution or correlation with other manifestations of the disease investigated. In addition to voxel-based total water content, information about the different environments of water can be gleaned from qMRI. The myelin water fraction can be extracted from the fit of very high-SNR multiple-echo T 2 decay curves with a superposition of a large number of exponentials. Diseases involving de- or dysmyelination can be investigated and lead to novel observations regarding the water compartmentalisation in tissue, despite the limited spatial coverage. In conclusion, quantitative MRI is emerging as an unparalleled tool for the study of the normal and diseased brain, replacing the customary time–space environment of the sequential mixed-contrast MRI with a multi-NMR-parametric space in which tissue microscopy is increasingly revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This sequence has recently become available on Siemens scanners as the multi-echo variant of the standard multi-slice gradient echo. Other manufacturers also have similar product sequences.

References

  1. Shah, N. J., Zaitsev, M., Steinhoff, S., Zilles, K. A new method for fast multislice T1 mapping. Neuroimage 2001;14(5):1175–1185.

    Article  PubMed  CAS  Google Scholar 

  2. Steinhoff, S., Zaitsev, M., Zilles, K., Shah, N. J. Fast T(1) mapping with volume coverage. Magn Reson Med 2001 Jul;46(1):131–140.

    Article  PubMed  CAS  Google Scholar 

  3. Neeb, H., Shah, N. J. Enhancing the precision of quantitative water content mapping by optimizing sequence parameters. Magn Reson Med 2006a;56(1):224–229.

    Article  PubMed  CAS  Google Scholar 

  4. Neeb, H., Zilles, K., Shah, N. J. A new method for fast quantitative mapping of absolute water content in vivo. Neuroimage 2006b;31(3):1156–1168.

    Article  PubMed  CAS  Google Scholar 

  5. Neeb, H., Zilles, K., Shah, N. J. Fully-automated detection of cerebral water content changes: Study of age- and gender-related H2O patterns with quantitative MRI. Neuroimage 2006c;29(3):910–922.

    Article  PubMed  Google Scholar 

  6. Neeb, H., Ermer, V., Stocker, T., Shah, N. J. Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 2008;42(3):1094–1109.

    Article  PubMed  CAS  Google Scholar 

  7. Tofts, P. Quantitative MRI of the Brain: Measuring Changes Caused by Disease. London: Wiley; 2003.

    Google Scholar 

  8. Deoni, S. C. L., Rutt, B. K., Peters, T. M. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49(3):515–526.

    Article  PubMed  Google Scholar 

  9. Deoni, S. C. L., Peters, T. M., Rutt, B. K. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53(1):237–241.

    Article  PubMed  Google Scholar 

  10. Deoni, S. C. L., Rutt, B. K., Arun, T., Pierpaoli, C., Jones, D. K. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med 2008;60(6):1372–1387.

    Article  PubMed  Google Scholar 

  11. Warntjes, J. B. M., Leinhard, O. D., West, J., Lundberg, P. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage. Magn Reson Med 2008;60(2):320–329.

    Article  PubMed  CAS  Google Scholar 

  12. Preibisch, C., Volz, S., Anti, S., Deichmann, R. Exponential excitation pulses for improved water content mapping in the presence of background gradients. Magn Reson Med 2008;60(4):908–916.

    Article  PubMed  Google Scholar 

  13. Mathur-DeVre, R. Biomedical implications of the relaxation behaviour of water related to NMR imaging. Br J Radiol 1984;57(683):955–976.

    Article  CAS  Google Scholar 

  14. Shah, N. J., Neeb, H., Kircheis, G., Engels, P., Haeussinger, D., Zilles, K. Quantitative cerebral water content mapping in hepatic encephalopathy. Neuroimage 2008;41(3):706–717.

    Article  PubMed  CAS  Google Scholar 

  15. Shah, N. J., Zaitsev, M., Steinhoff, S., Wiese, S., Zilles, K. (2000). Development of Sequences for fMRI: Keyhole Imaging and Relaxation Time Mapping. eenc.uni-leipzig.de/Shah.pdf.

    Google Scholar 

  16. Dierkes, T., Neeb, H., Shah, N. (2004). Distortion correction in echo-planar imaging and quantitative T 2* mapping. Proceedings of the international workshop on quantitation in biomedical imaging with PET and MRI.

    Google Scholar 

  17. Zaitsev, M., Steinhoff, S., Shah, N. J. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping. Magn Reson Med 2003;49(6):1121–1132.

    Article  PubMed  CAS  Google Scholar 

  18. Look, D. C., Locker, D. R. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970;41:250–251.

    Article  CAS  Google Scholar 

  19. Deichmann, R. Fast high-resolution T1 mapping of the human brain. Magn Reson Med 2005;54(1):20–27.

    Article  PubMed  Google Scholar 

  20. Tong, C. Y., Prato, F. S. A novel fast T1-mapping method. J Magn Reson Imaging 1994;4(5):701–708.

    Article  PubMed  CAS  Google Scholar 

  21. Mihara, H., Sekino, M., Iriguchi, N., Ueno, S. (2005). A method for an accurate T 1 relaxation-time measurement compensating B1 field inhomogeneity in magnetic-resonance imaging. 49th Annual Conference on Magnetism and Magnetic Materials, Jacksonville, Florida (USA), AIP.

    Google Scholar 

  22. Menon, R. S., Allen, P. S. Application of continuous relaxation time distributions to the fitting of data from model systems and excised tissue. Magn Reson Med 1991;20(2):214–227.

    Article  PubMed  CAS  Google Scholar 

  23. Fischer, H. W., Rinck, P. A., Van Haverbeke, Y., Muller, R. N. Nuclear relaxation of human brain gray and white matter: Analysis of field dependence and implications for MRI. Magn Reson Med 1990;16(2):317–334.

    Article  PubMed  CAS  Google Scholar 

  24. Stewart, W. A., MacKay, A. L., Whittall, K. P., Moore, G. R., Paty, D. W. Spin-spin relaxation in experimental allergic encephalomyelitis. Analysis of CPMG data using a non-linear least squares method and linear inverse theory. Magn Reson Med 1993;29(6):767–775.

    Article  PubMed  CAS  Google Scholar 

  25. MacKay, A., Whittall, K., Adler, J., Li, D., Paty, D., Graeb, D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994;31(6):673–677.

    Article  PubMed  CAS  Google Scholar 

  26. Brownstein, K. R., Tarr, C. E. Spin-lattice relaxation in a system governed by diffusion. J Magn Reson 1977;26:17–24.

    CAS  Google Scholar 

  27. Brownstein, K. R., Tarr, C. E. Importance of classical diffusion in NMR studies of water in biological cells. Phys Rev A 1979;19:2446–2453.

    Article  Google Scholar 

  28. Whittall, K. P., MacKay, A. L., Graeb, D. A., Nugent, R. A., Li, D. K., Paty, D. W. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997;37(1):34–43.

    Article  PubMed  CAS  Google Scholar 

  29. Moore, G. R. W., Leung, E., MacKay, A. L., Vavasour, I. M., Whittall, K. P., Cover, K. S. et al. A pathology-MRI study of the short-T2 component in formalin-fixed multiple sclerosis brain. Neurology 2000;55(10):1506–1510.

    PubMed  CAS  Google Scholar 

  30. Webb, S., Munro, C. A., Midha, R., Stanisz, G. J. Is multicomponent T2 a good measure of myelin content in peripheral nerve? Magn Reson Med 2003;49(4):638–645.

    Article  PubMed  CAS  Google Scholar 

  31. Laule, C., Leung, E., Lis, D. K., Traboulsee, A. L., Paty, D. W., MacKay, A. L. et al. Myelin water imaging in multiple sclerosis: Quantitative correlations with histopathology. Mult Scler 2006;12(6):747–753.

    Article  PubMed  CAS  Google Scholar 

  32. Laule, C., Kozlowski, P., Leung, E., Li, D. K., Mackay, A. L., Moore, G. R. Myelin water imaging of multiple sclerosis at 7 T: Correlations with histopathology. Neuroimage 2008;40:1575–1580.

    Article  PubMed  Google Scholar 

  33. Flynn, S. W., Lang, D. J., Mackay, A. L., Goghari, V., Vavasour, I. M., Whittall, K. P. et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 2003;8(9):811–820.

    Article  PubMed  CAS  Google Scholar 

  34. Oh, J., Han, E. T., Pelletier, D., Nelson, S. J. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 And 3 T. Magn Reson Imaging 2006;24(1):33–43.

    Article  PubMed  Google Scholar 

  35. Sirrs, S. M., Laule, C., Maedler, B., Brief, E. E., Tahir, S. A., Bishop, C. et al. Normal appearing white matter in subjects with phenylketonuria: Water content, myelin water fraction, and metabolite concentrations. Radiology 2007;242(1):236–243.

    Article  PubMed  Google Scholar 

  36. Tozer, D. J., Davies, G. R., Altmann, D. R., Miller, D. H., Tofts, P. S. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetisation transfer and multicompartmental T2 analysis. Magn Reson Med 2005;53(6):1415–1422.

    Article  PubMed  CAS  Google Scholar 

  37. Vidarsson, L., Conolly, S. M., Lim, K. O., Gold, G. E., Pauly, J. M. Echo time optimization for linear combination myelin imaging. Magn Reson Med 2005;53(2):398–407.

    Article  PubMed  Google Scholar 

  38. Wu, Y., Alexander, A. L., Fleming, J. O., Duncan, I. D., Field, A. S. Myelin water fraction in human cervical spinal cord in vivo. J Comput Assist Tomogr 2006;30(2):304–306.

    Article  PubMed  Google Scholar 

  39. Deoni, S. C., Rutt, B. K., Jones, D. K. Investigating exchange and multicomponent relaxation in fully-balanced steady state free precession imaging. J Magn Reson Imaging 2008;27:1421–1429.

    Article  PubMed  Google Scholar 

  40. Du, Y. P., Chu, R., Hwang, D., Brown, M. S., Kleinschmidt-DeMasters, B. K., Singel, D. et al. Fast multislice mapping of the myelin water fraction using multicompartment analysis of T2* decay at 3t: A preliminary postmortem study. Magn Reson Med 2007;58(5):865–870.

    Article  PubMed  Google Scholar 

  41. Yablonskiy, D. A., Haacke, E. M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime. Magn Reson Med 1994;32(6):749–763.

    Article  PubMed  CAS  Google Scholar 

  42. Lin, W., Venkatesan, R., Gurleyik, K., He, Y. Y., Powers, W. J., Hsu, C. Y. An absolute measurement of brain water content using magnetic resonance imaging in two focal cerebral ischemic rat models. J Cereb Blood Flow Metab 2000;20(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  43. Mansfield, P. Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 1977;10(3):L55–L58.

    Article  CAS  Google Scholar 

  44. Haase, A., Frahm, J., Matthaei, D., Hanicke, W., Merboldt, K. D. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 1986;67(2):258–266 (1969).

    CAS  Google Scholar 

  45. Jezzard, P., Balaban, R. S. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  46. Graham, S. J., Stanchev, P. L., Bronskill, M. J. Criteria for analysis of multicomponent tissue T2 relaxation data. Magn Reson Med 1996;35:370–378.

    Article  PubMed  CAS  Google Scholar 

  47. Poon, C. S., Henkelman, R. M. Practical T2 quantitation for clinical applications. J Magn Reson Imaging 1992;2(5):541–553.

    Article  PubMed  CAS  Google Scholar 

  48. Ye, F. Q., Martin, W. R., Allen, P. S. Estimation of brain iron in vivo by means of the interecho time dependence of image contrast. Magn Reson Med 1996;36(1):153–158.

    Article  PubMed  CAS  Google Scholar 

  49. Skinner, M. G., Kolind, S. H., Mackay, A. L. The effect of varying echo spacing within a multiecho acquisition: Better characterization of long T(2) components. Magn Reson Imaging 2007;25(6):834–839.

    Article  Google Scholar 

  50. Laule, C., Vavasour, I. M., Mädler, B., Kolind, S. H., Sirrs, S. M., Brief, E. E., Traboulsee, A. L., Moore, G. R., Li, D. K., MacKay, A. L. MR evidence of long T2 water in pathological white matter. J Magn Reson Imaging 2007;26(4):1117–1121.

    Article  PubMed  Google Scholar 

  51. Laule, C., Kolind, S. H., Bjarnason, T. A., Li, D. K., Mackay, A. L. In vivo multiecho T(2) relaxation measurements using variable TR to decrease scan time. Magn Reson Imaging 2007;25:834–839.

    Article  PubMed  Google Scholar 

  52. Foltz, W. D., Al-Kwifi, O., Sussman, M. S., Stainsby, J. A., Wright, G. A. Optimized spiral imaging for measurement of myocardial T2 relaxation. Magn Reson Med 2003;49(6):1089–1097.

    Article  PubMed  Google Scholar 

  53. Mädler, B., MacKay, A. L. 2006, In-vivo 3D Multi-component T2-Relaxation Measurements for Quantitative Myelin Imaging at 3T (2006), Proceedings of the 14-th ISMRM Scientific Meeting and Exhibition 2006, Seattle. USA, p. 2112.

    Google Scholar 

  54. Armspach, J. P., Gounot, D., Rumbach, L., Chambron, J. In vivo determination of multiexponential T2 relaxation in the brain of patients with multiple sclerosis. Magn Reson Imaging 1991;9(1):107–113.

    Article  PubMed  CAS  Google Scholar 

  55. Papanikolaou, N., Maniatis, V., Pappas, J., Roussakis, A., Efthimiadou, R., Andreou, J. Biexponential T2 relaxation time analysis of the brain: Correlation with magnetisation transfer ratio. Invest Radiol 2002;37(7):363–367.

    Article  PubMed  CAS  Google Scholar 

  56. Stanisz, J., Henkelman, R. M. Diffusional anisotropy of T2 components in bovine optic nerve. Magn Reson Med 1998;40(3):405–410.

    Article  PubMed  CAS  Google Scholar 

  57. Moody, J. B., Xia, Y. Analysis of multi-exponential relaxation data with very short components using linear regularization. J Magn Reson 2004;167(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  58. Beaulieu, C., Fenrich, F. R., Allen, P. S. Multicomponent water proton transverse relaxation and T2-discriminated water diffusion in myelinated and nonmyelinated nerve. Magn Reson Imaging 1998;16(10):1201–1210.

    Article  PubMed  CAS  Google Scholar 

  59. Fenrich, F. R., Beaulieu, C., Allen, P. S. Relaxation times and microstructures. NMR Biomed 2001;14(2):133–139.

    Article  PubMed  CAS  Google Scholar 

  60. Gareau, P. J., Rutt, B. K., Karlik, S. J., Mitchell, J. R. Magnetisation transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging 2000;11(6):586–595.

    Article  PubMed  CAS  Google Scholar 

  61. Whittall, K. P., MacKay, A. L. Quantitative interpretation of NMR relaxation data. J Magn Reson 1989;84:134–152.

    CAS  Google Scholar 

  62. Kroeker, R. M., Henkelman, R. M. Analysis of biological NMR relaxation data with continuous distributions of relaxation times. J Magn Reson 1986;69:218–235.

    CAS  Google Scholar 

  63. Lawson, C. L., Hanson, R. J. Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall; 1974.

    Google Scholar 

  64. Tofts, P. S. Quantitative Magnetic Resonance Methods. London: Elsevier; 2004.

    Google Scholar 

  65. Keegan, B. M., Noseworthy, J. H. Multiple sclerosis. Annu Rev Med 2002;53:285–302.

    Article  PubMed  CAS  Google Scholar 

  66. Paty, D. W., Li, D. K. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI study group and the IFNB multiple sclerosis study group. Neurology 1993;43(4):662–667.

    PubMed  CAS  Google Scholar 

  67. Laule, C., Vavasour, I. M., Moore, G. R. W., Oger, J., Li, D. K. B., Paty, D. W. et al. Water content and myelin water fraction in multiple sclerosis: A T2 relaxation study. J Neurol 2004;251(3):284–293.

    Article  PubMed  CAS  Google Scholar 

  68. Allen, I. V., Glover, G., Anderson, R. Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis (MS). Acta Neuropathol Suppl 1981;7:176–178.

    Article  PubMed  CAS  Google Scholar 

  69. Itoyama, Y., Sternberger, N. H., Webster, H. D., Quarles, R. H., Cohen, S. R., Richardson, E. P., Jr. Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann Neurol 1980;7(2):167–177.

    Article  PubMed  CAS  Google Scholar 

  70. Estilaei, M., MacKay, A., Whittall, K., Mayo, J. In vitro measurements of water content and T2 relaxation times in lung using a clinical MRI scanner. J Magn Reson Imaging 1999;9(5):699–703.

    Article  PubMed  CAS  Google Scholar 

  71. Gideon, P., Rosenbaum, S., Sperling, B., Palle, P. MR-visible brain water content in human acute stroke. Magn Reson Imaging 1999;17(2):301–304.

    Article  PubMed  CAS  Google Scholar 

  72. Lüsse, S., Claassen, H., Gehrke, T., Hassenpflug, J., Schünke, M., Heller, M., Glüer, C. C. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 2000;18(4):423–430.

    Article  PubMed  Google Scholar 

  73. Andersen, C. In vivo estimation of water content in cerebral white matter of brain tumour patients and normal individuals: Towards a quantitative brain edema definition. Acta Neurochir 1997;139:249–256.

    Article  CAS  Google Scholar 

  74. Fernandez-Seara, M. A., Song, H. K., Wehrli, F. W. Trabecular bone volume fraction mapping by low-resolution MRI. Magn Reson Med 2001;46(1):103–113.

    Article  PubMed  CAS  Google Scholar 

  75. Farace, P., Pontalti, R., Cristoforetti, L., Antolini, R., Scarpa, M. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning. Phys Med Biol 1997;42(11):2159–2174.

    Article  PubMed  CAS  Google Scholar 

  76. Lin, W., Paczynski, R. P., Venkatesan, R., He, Y. Y., Powers, W. J., Hsu, C. Y., Haacke, E. M. Quantitative regional brain water measurement with magnetic resonance imaging in a focal ischemia model. Magn Reson Med 1997;38(2):303–310.

    Article  PubMed  CAS  Google Scholar 

  77. Rooney, W. D., Johnson, G., Li, X., Cohen, E. R., Kim, S. G., Ugurbil, K., Springer, C. S., Jr. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 2007 Feb;57(2):308–318.

    Article  PubMed  CAS  Google Scholar 

  78. Oros-Peusquens, A.-M., Laurila, M., Shah, N. J. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. Magma 2008 Mar;21(1–2):131–147.

    Article  PubMed  CAS  Google Scholar 

  79. Gareau, P. J., Rutt, B. K., Bowen, C. V., Karlik, S. J., Mitchell, J. R. In vivo measurements of multi-component T2 relaxation behaviour in guinea pig brain. Magn Reson Imaging 1999;17(9):1319–1325.

    Article  PubMed  CAS  Google Scholar 

  80. Araujo, C., MacKay, A. L., Whittall, K. P., Hailey, J. R. T. A diffusion model for spin–spin relaxation of compartmentalized water in wood. J Magn Reson 1993;101:248–261.

    Article  CAS  Google Scholar 

  81. Yagishita, A., Nakano, I., Oda, M., Hirano, A. Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 1994;191:455–460.

    PubMed  CAS  Google Scholar 

  82. Brosnan, T., Wright, G., Nishimura, D., Cao, Q., Macovski, A., Sommer, F. G. Noise reduction in magnetic resonance imaging. Magn Reson Med 1988;8:394–409.

    Article  PubMed  CAS  Google Scholar 

  83. Jones, C. K., Xiang, Q. S., Whittall, K. P., MacKay, A. L. Linear combination of multiecho data: Short T 2 component selection. Magn Reson Med 2004;51:495–502.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadim Joni Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shah, N.J., Ermer, V., Oros-Peusquens, AM. (2011). Measuring the Absolute Water Content of the Brain Using Quantitative MRI. In: Modo, M., Bulte, J. (eds) Magnetic Resonance Neuroimaging. Methods in Molecular Biology, vol 711. Humana Press. https://doi.org/10.1007/978-1-61737-992-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-992-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-991-8

  • Online ISBN: 978-1-61737-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics