Skip to main content

Differentiating Radiation-Induced Necrosis from Tumor Progression After Stereotactic Radiosurgery for Brain Metastases, Using Evaluation of Blood Flow with Arterial Spin Labeling (ASL): The Importance of Setting a Baseline

  • Chapter
  • First Online:
Gamma Knife Neurosurgery in the Management of Intracranial Disorders II

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 128))

Abstract

Objective: This study evaluated the usefulness of arterial spin labeling (ASL) for assessment of tumor blood flow (TBF) and cerebral blood flow (CBF) before Gamma Knife surgery (GKS) for intracranial metastases, in order to analyze the variability of perfusion characteristics at baseline and to reveal how these data may impact differentiation of radiation-induced effects from tumor progression during follow-up.

Methods: Radiological data from 87 patients with intracranial metastases of solid cancers, who underwent TBF/CBF analysis by means of ASL at the Hawaii Advanced Imaging Institute between 2015 and 2018 both before and after GKS, were reviewed retrospectively. Only cases with a largest tumor diameter of ≥10 mm were included in the study cohort (N = 53).

Results: In comparison with CBF in the healthy contralateral cerebral cortex, TBF before GKS was greater in 32 cases (60%), lesser in 7 cases (13%), and equivalent in 14 cases (27%). There was significant variability in TBF both within and between histologically different groups of tumors.

Conclusion: Since, at baseline, approximately 40% of intracranial metastases have TBF that is lesser or equivalent to CBF, increased blood flow in the contrast-enhancing lesion after GKS may have insufficient sensitivity for identification of tumor progression. Availability of baseline TBF data may significantly facilitate differential diagnosis in such cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chernov MF, Ono Y, Abe K, Usukura M, Hayashi M, Izawa M, Diment SV, Ivanov PI, Muragaki Y, Iseki H, Hori T, Okada Y, Takakura K. Differentiation of tumor progression and radiation-induced effects after intracranial radiosurgery. Acta Neurochir Suppl. 2013;116:193–210.

    PubMed  Google Scholar 

  2. Detre JA, Rao H, Wang DJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging. 2012;35:1026–37.

    Article  Google Scholar 

  3. Grade M, Hernandez Tamames JA, Pizzini FB, Achten E, Golay X, Smits M. A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology. 2015;57:1181–202.

    Article  CAS  Google Scholar 

  4. Hackney DB. Forget the diffusion—do we need T2-weighted MR images to detect early central nervous system injury? Radiology. 2009;250:303–4.

    Article  Google Scholar 

  5. Mehta AI, Kanaly CW, Friedman AH, Bigner DD, Sampson JH. Monitoring radiographic brain tumor progression. Toxins (Basel). 2011;3:191–200.

    Article  Google Scholar 

  6. Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol. 2013;15:515–34.

    Google Scholar 

  7. Ye J, Bhagat SK, Li H, Luo X, Wang B, Liu L, Yang G. Differentiation between recurrent gliomas and radiation necrosis using arterial spin labeling perfusion imaging. Exp Ther Med. 2016;11:2432–6.

    Article  Google Scholar 

  8. Hoefnagels FW, Lagerwaard FJ, Sanchez E, Haasbeek CJ, Knol DL, Slotman BJ, Vandertop WP. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol. 2009;256:878–87.

    Article  Google Scholar 

  9. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol. 2008;29:1428–35.

    Google Scholar 

  10. Lai G, Mahadevan A, Hackney D, Warnke PC, Nigim F, Kasper E, Wong ET, Carter BS, Chen CC. Diagnostic accuracy of PET, SPECT, and arterial spin-labeling in differentiating tumor recurrence from necrosis in cerebral metastasis after stereotactic radiosurgery. AJNR Am J Neuroradiol. 2015;36:2250–5.

    Article  CAS  Google Scholar 

  11. Liu TT, Brown GG. Measurement of cerebral perfusion with arterial spin labeling—part 1: methods. J Int Neuropsychol Soc. 2007;13:517–25.

    Google Scholar 

  12. Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. World J Radiol. 2010;2:384–98.

    Article  Google Scholar 

  13. Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics. 2007;4:346–59.

    Article  Google Scholar 

  14. Belliveau JG, Bauman G, Macdonald DR. Detecting tumor progression in glioma: current standards and new techniques. Expert Rev Anticancer Ther. 2016;16:1177–88.

    Article  CAS  Google Scholar 

  15. Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed. 1994;7:75–82.

    Article  CAS  Google Scholar 

  16. Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol. 2011;32:1885–92.

    Article  CAS  Google Scholar 

  17. Serizawa T, Saeki N, Higuchi Y, Ono J, Matsuda S, Sato M, Yanagisawa M, Iuchi T, Nagano O, Yamaura A. Diagnostic value of thallium-201 chloride single-photon emission computerized tomography in differentiating tumor recurrence from radiation injury after Gamma Knife surgery for metastatic brain tumors. J Neurosurg. 2005;102(Suppl):266–71.

    Article  Google Scholar 

  18. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49:694–9.

    Article  Google Scholar 

  19. Patel U, Patel A, Cobb C, Benkers T, Vermeulen S. The management of brain necrosis as a result of SRS treatment for intra-cranial tumors. Transl Cancer Res. 2014;3:373–82.

    Google Scholar 

  20. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.

    Google Scholar 

  21. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-oncology Working Group. J Clin Oncol. 2010;28:1963–72.

    Article  Google Scholar 

  22. van den Bent MJ, Vogelbaum MA, Wen PY, Macdonald DR, Chang SM. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s criteria. J Clin Oncol. 2009;27:2905–8.

    Article  Google Scholar 

  23. Elias AE, Carlos RC, Smith EA, Frechtling D, George B, Maly P, Sundgren PC. MR spectroscopy using normalized and non-normalized metabolite ratios for differentiating recurrent brain tumor from radiation injury. Acad Radiol. 2011;18:1101–8.

    Article  Google Scholar 

  24. Kano H, Kondziolka D, Lobato-Polo J, Zorro O, Flickinger JC, Lunsford LD. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery. 2010;66:486–92.

    Article  Google Scholar 

  25. Lee CC, Wintermark M, Xu Z, Yen CP, Schlesinger D, Sheehan JP. Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to Gamma Knife radiosurgery. J Neurooncol. 2014;118:351–61.

    Google Scholar 

  26. Stockham AL, Tievsky AL, Koyfman SA, Reddy CA, Suh JH, Vogelbaum MA, Barnett GH, Chao ST. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neurooncol. 2012;109:149–58.

    Google Scholar 

  27. Chawla S, Wang S, Wolf RL, Woo JH, Wang J, O’Rourke DM, Judy KD, Grady MS, Melhem ER, Poptani H. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol. 2007;28:1683–9.

    Article  CAS  Google Scholar 

  28. Maldjian JA, Laurienti PJ, Burdette JH, Kraft RA. Clinical implementation of spin-tag perfusion magnetic resonance imaging. J Comput Assist Tomogr. 2008;32:403–6.

    Article  Google Scholar 

  29. Noguchi T, Yoshiura T, Hiwatashi A, Togao O, Yamashita K, Nagao E, Shono T, Mizoguchi M, Nagata S, Sasaki T, Suzuki SO, Iwaki T, Kobayashi K, Mihara F, Honda H. Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol. 2008;29:688–93.

    Article  CAS  Google Scholar 

  30. Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases—translation to new therapies. Nat Rev Clin Oncol. 2011;8:344–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Holmes .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflict of interest concerning the reported materials or methods.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lambert, E.A., Holmes, S. (2021). Differentiating Radiation-Induced Necrosis from Tumor Progression After Stereotactic Radiosurgery for Brain Metastases, Using Evaluation of Blood Flow with Arterial Spin Labeling (ASL): The Importance of Setting a Baseline. In: Chernov, M.F., Hayashi, M., Chen, C.C., McCutcheon, I.E. (eds) Gamma Knife Neurosurgery in the Management of Intracranial Disorders II. Acta Neurochirurgica Supplement, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-69217-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69217-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69216-2

  • Online ISBN: 978-3-030-69217-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics