Skip to main content

Fifty Years of Progress in Carotid Body Physiology – Invited Article

  • Chapter
Arterial Chemoreceptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 648))

Abstract

Research on arterial chemoreceptors, particularly on the carotid body, has been fruitful in the last fifty years, to which this review is addressed. The functional anatomy of the organ appears to be well established. The biophysical bases by which glomus cells transduce chemical changes in the milieu intérieur (hypoxia, hypercapnia, acidosis) into electrical and biochemical changes in glomus cells have received much attention. Physical changes (in temperature, flow and osmolarity) are also detected by the carotid body. Electrical coupling between glomus cells themselves appears as very extensive. Sustentacular cells classically considered as ensheathing glia for glomus cells and nerve endings now appear to behave as stem cells precursors for glomus cells under chronic hypoxic conditions. Many papers have been devoted to transmitters released from glomus cells (acetylcholine, dopamine, ATP) and well as to their effects upon chemosensory nerve activity. Chemosensory neurons have been explored from generation of action potentials at peripheral nerve endings, passing to properties of perikarya at petrosal ganglia and finally at characterization of synaptic transmission at solitary tract nuclei. There is abundant literature on ventilatory and cardiovascular reflexes elicited from arterial chemoreceptors. The transient effects of sudden and brief withdrawal of chemosensory discharges by hyperoxia also provide clues on the role played by carotid bodies in the homeostasis of full organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alcayaga J, Iturriaga R, Varas R, Arroyo J, Zapata P (1998) Selective activation of carotid nerve fibres by acetylcholine applied to the cat petrosal ganglion in vitro. Brain Res 786: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Biscoe TJ, Duchen MR (1990) Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J Physiol 428: 39–59

    PubMed  CAS  Google Scholar 

  • Buerk DG, Lahiri S, Chugh D, Mokashi A (1995) Electrochemical detection of rapid DA release kinetics during hypoxia in perfused-superfused cat CB. J Appl Physiol 78: 830–7

    PubMed  CAS  Google Scholar 

  • Campanucci VA, Nurse CA (2007) Autonomic innervation of the carotid body: Role in efferent inhibition. Respir Physiol Neurobiol 157: 83–92

    Article  PubMed  CAS  Google Scholar 

  • Conde SV, Monteiro EC (2006) Profiles for ATP and adenosine release at the carotid body in response to O2 concentrations. Adv Exp Med Biol 580: 179–84

    Article  PubMed  Google Scholar 

  • Dejours P (1957) Methodological importance of the study of a living organism at the initial phase of interruption of a physiological equilibrium. C R Hebd Seances Acad Sci 245: 1946–8

    PubMed  CAS  Google Scholar 

  • Donnelly DF (1993) Electrochemical detection of catecholamine release from rat carotid body in vitro. J Appl Physiol 74: 2330–7

    PubMed  CAS  Google Scholar 

  • Eyzaguirre C (2007) Electric synapses in the carotid body-nerve complex. Respir Physiol Neurobiol 157: 116–122

    Article  PubMed  CAS  Google Scholar 

  • Eyzaguirre C, Fitzgerald RS, Lahiri S, Zapata P (1983) Arterial chemoreceptors. In: American Physiological Society: Handbook of Physiology, sect. 2: The Cardiovascular System, vol. 3: Peripheral Circulation and Organ Blood Flow. Baltimore, MD: Williams & Wilkins, pp. 557–621

    Google Scholar 

  • Eyzaguirre C, Koyano H (1965) Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol 178: 385–409

    PubMed  CAS  Google Scholar 

  • Eyzaguirre C, Koyano H, Taylor JR (1965) Presence of acetylcholine and transmitter release from carotid body chemoreceptors. J Physiol 178: 463–76

    PubMed  CAS  Google Scholar 

  • Eyzaguirre C, Monti-Bloch L, Baron M, Hayashida Y, Woodbury JW (1989) Changes in glomus cell membrane properties in response to stimulants and depressants of carotid nerve discharge. Brain Res 477: 265–279

    Article  PubMed  CAS  Google Scholar 

  • Fidone S, González C, Yoshizaki K (1982) Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol 333: 93–110

    PubMed  CAS  Google Scholar 

  • Fitzgerald RS, Lahiri S (1986) Reflex responses to chemoreceptor stimulation. In: American Physiological Society (eds) Handbook of Physiology, sect. 3, vol. 2, pp. 313–362

    Google Scholar 

  • Fitzgerald RS, Shirahata M (1994) Acetylcholine and carotid body excitation during hypoxia in the cat. J Appl Physiol 76: 1566–1574

    PubMed  CAS  Google Scholar 

  • Fitzgerald RS, Shirahata M (1997) Systemic responses elicited by stimulating the carotid body: primary and secondary mechanisms. In: González C (ed) The Carotid Body Chemoreceptors. Berlin: Springer-Verlag, pp. 171–191

    Google Scholar 

  • Fitzgerald RS, Shirahata M, Wang HY (2000) Acetylcholine is released from in vitro cat carotid bodies during hypoxic stimulation. Adv Exp Med Biol 475: 485–94

    PubMed  CAS  Google Scholar 

  • González C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol Rev 74: 829–898

    PubMed  Google Scholar 

  • Honda Y, Watanabe S, Hashizume I, Satomura Y, Hata N, Sakakibara Y, Severinghaus JW (1979) Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection. J Appl Physiol 46: 632–8

    PubMed  CAS  Google Scholar 

  • Iturriaga R, Alcayaga J, Zapata P (1996) Dissociation of hypoxia-induced chemosensory responses and catecholamine efflux in cat carotid body superfused in vitro. J Physiol 497: 551–64

    PubMed  CAS  Google Scholar 

  • López-Barneo J, López-López JR, Ureña J, González C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241: 580–582

    Article  PubMed  Google Scholar 

  • McDonald DM (1981) Peripheral chemoreceptors: structure-function relationships of the carotid body. In: Hornbein TF (ed) Regulation of Breathing. Lung Biology in Health and Disease, vol 17. NY: Marcel Dekker. pp. 105–319

    Google Scholar 

  • McQueen DS, Bond SM, Moores C, Chessell I, Humphrey PP, Dowd E (1998) Activation of P2X receptors for adenosine triphosphate evokes cardiorespiratory reflexes in anaesthetized rats. J Physiol 507: 84–55

    Article  Google Scholar 

  • Mulligan E, Lahiri S (1981) Dependence of carotid chemoreceptor stimulation by metabolic agents on PaO2 and PaCO2. J Appl Physiol 50: 884–891

    PubMed  CAS  Google Scholar 

  • Nurse CA, Zhang M (2001) Synaptic mechanisms during re-innervation of rat arterial chemoreceptors in co-culture. Comp Biochem Physiol A - Mol Integr Physiol 130: 241–251

    Article  PubMed  CAS  Google Scholar 

  • O’Regan RG (1979) Responses of the chemoreceptors of the cat carotid body perfused with cell-free solutions. Ir J Med Sci 148: 78–85

    Article  PubMed  Google Scholar 

  • Pardal R, Ortega-Sáenz P, Durán R, López-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131: 364–377

    Article  PubMed  CAS  Google Scholar 

  • Peers C, Buckler KJ (1995) Transduction of chemostimuli by the type I carotid body cell. J Memb Biol 144: 1–9

    Article  CAS  Google Scholar 

  • Prasad M, Fearon IM, Zhang M, Laing M, Vollmer C, Nurse CA (2001) Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: role in chemosensory signalling. J Physiol 537: 667–77

    Article  PubMed  CAS  Google Scholar 

  • Rodman JR, Curran AK, Henderson KS, Dempsey JA, Smith CA (2001) Carotid body denervation in dogs: eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol 91: 328–35. Erratum in: J Appl Physiol 91(5): following table of contents

    PubMed  CAS  Google Scholar 

  • Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford APDW, Spyer KM, Burnstock G (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23: 11315–11321.

    PubMed  CAS  Google Scholar 

  • Schultz HD, Li YL, Ding Y (2007) Arterial chemoreceptors and sympathetic nerve activity: implications for hypertension and heart failure. Hypertension 50: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Shirahata M, Fitzgerald RS (1996) Release of acetylcholine from cultured cat and pig glomus cells. Adv Exp Med Biol 410: 233–237

    PubMed  CAS  Google Scholar 

  • Verna A (1997) The mammalian carotid body: morphological data. In: González C (ed) The Carotid Body Chemoreceptors. Berlin: Springer; Austin, TX: Landes, pp. 1–29

    Google Scholar 

  • Zapata P (1997) Chemosensory activity in the carotid nerve: Effects of pharmacological agents. In: González C (ed) The Carotid Body Chemoreceptors. Berlin: Springer-Verlag, pp. 119–146

    Google Scholar 

  • Zapata P (2007) Is ATP a suitable co-transmitter in carotid body arterial chemoreceptors? Respir Physiol Neurobiol 157: 106–115

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Zhong HJ, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol, Lond 525: 143–158

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zapata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fitzgerald, R., Eyzaguirre, C., Zapata, P. (2009). Fifty Years of Progress in Carotid Body Physiology – Invited Article . In: Gonzalez, C., Nurse, C.A., Peers, C. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 648. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2259-2_2

Download citation

Publish with us

Policies and ethics