Skip to main content
Log in

Brain development:1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We compared in vitro1H magnetic resonance spectroscopy (MRS) measurements of rat brain extracts (rats: 2–56 days old) with chromatographic measurements and in a further step also with results of in vivo MRS. The following substances can be reliably measured in brain extracts by in vitro MRS: N-acetylaspartate (NAA), total creatine (Cr), phosphorylethanoloamine (PE), taurine (Tau), glutamate (Glu), glutamine (Gln), γ-aminobutyrate (GABA) and alanine (Ala). Two different methods of MRS data evaluation compared with chromatographic data on Cr and NAA are shown. During development of the rat from day 2–56 brain concentrations of PE, Tau and Ala decrease, those of NAA, Cr, Glu and Gln increase, while GABA does not change. The developmental patterns of these substances are the same, whether measured by in vitro MRS or by chromatographic methods. Quantification of NAA, Cr, Tau, GABA and PE leads to the same results with both methods, while Glu, Gln and Ala concentrations determined by in vitro MRS are apparently lower than those measured chemically. The NAA/Cr ratios of 7 to 35-day-old rats were determined by in vivo1H MRS. These results correlate with chromatographic and in vitro data. Using appropriate methods in the in vivo and in vitro MR-technique, the obtained data compare well with the chromatographic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Petroff, O. A. C. 1988. Biological1H-NMR spectroscopy. Comp. Biochem. Physiol. 90B 249–260.

    Google Scholar 

  2. Arus, C., Yen-Chang, and Barany, M. 1985. Proton nuclear magnetic resonance spectra of excised rat brain. Physiol. Chem. Phys. Med. NMR 17:23–33.

    PubMed  Google Scholar 

  3. Marinier, D. L. S., Brignet, A., and Delmau, J. 1985. Perspectives d'emploi de la R.M.N pour l'étude biochimique de la substance blanche cerebrale. Arch. Int. Physiol. Biochim. 93:129–140.

    PubMed  Google Scholar 

  4. Middlehurst, C. R., Beilharz, G. R., Hunt, G. E., Kuchel, P. W., and Johnson, G. F.-S. 1984. Proton nuclear magnetic resonance spectroscopy of rabbit brain homogenate. J. Neurochem. 42:878–879.

    PubMed  Google Scholar 

  5. Ogino, T., Behar, K. L., and Shulman, R. G. 1986. Assignment of resonances in the1H-spectrum of rat brain in vitro and in situ by 2-D shift correlated and J-resolved spectroscopy. Abstracts Soc. Magn. Reson. Med. 3:985–986.

    Google Scholar 

  6. Young, R. S. K., Petroff, O. A. C., Dunham, S. L., and Cowan B. E. 1987. Neurotransmitter activity during prolonged and brief neonatal seizure. Pediatric Research 21:499A.

    Google Scholar 

  7. Young, R. S. K., and Cowan, B. E., Petroff, O. A. C., Novotny, E., Dunham, S. L., and Briggs, R. W. 1987. In vivo and in vitro1H-NMR study of hypoglycaemia during neonatal seizure. Ann. Neuro. 22:622–628.

    Google Scholar 

  8. Young, R. S. K., Petroff, O. A. C., Dunham, S. L., and Cowan B. E. 1987. What metabolic fuel is utilized by neonatal brain when hypoglycaemia complicates seizure? A1H-NMR study. Neurology 37:345.

    PubMed  Google Scholar 

  9. Ackermann, J. J. H., Grove, T. H., Wong, G. G., Gadian, D. G., and Radda, G. K. 1980. Mapping of metabolites in whole animals by31P NMR using surface coils. Nature 283:167–170.

    PubMed  Google Scholar 

  10. Barany, M., Spigos, D. G., Mok, E., Venkatasubramanian, P. N., Wilbur, A. C., and Langer, B. G. 1987. Magnetic Resonance Imaging 5:393–398.

    PubMed  Google Scholar 

  11. Behar, K. L., den Hollander, J. A., Stromski, M. E., Ogino, T., Shulman, R. G., Petroff, O. A. C., and Prichard, J. W. 1983. High-resolution1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc. natn. Acad. Sci. 80:4945–4948.

    Google Scholar 

  12. Bottomly, P. A., Edelstein, W. A., Foster, T. H., and Adams, W. A. 1985. In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: A window to metabolism? Proc. natn. Acad. Sci. 82:2148–2152.

    Google Scholar 

  13. Frahm, J., Bruhn, H., Gyngell, M. L., Merboldt, K. D., Hänicke, W., and Sauter, R. 1989. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magnetic Resonance in Medicine 9:79–93.

    PubMed  Google Scholar 

  14. Petroff, O. A. C., Prichard, J. W., Behar, K. L., Rothman, D., Alger, J. R., and Shulman, R. G. 1984. In vivo phosphorus nuclear magnetic resonance spectroscopy in status eptilepticus. Ann. Neurol. 16:169–177.

    PubMed  Google Scholar 

  15. Petroff, O. A. C., Prichard, J. W., Behar, K. L., Rothman, D., Alger, J. R., and Shulman, R. G. 1985. Cerebral metabolism in hyper and hypocarbia:31P and1H NMR studies. Neurology 35:1681–1688.

    PubMed  Google Scholar 

  16. Prichard, J. W., Alger, J. R., Behar, K. L., Petroff, O. A. C., and Shulman, R. G., 1985. Cerebral metabolic studies in vivo by31P NMR. Proc. natn. Acad. Sci. 80:2748–2751.

    Google Scholar 

  17. Prichard, J. W., and Shulman, R. G. 1986. NMR spectroscopy of brain metabolism in vivo. A. Rev. Neurosvci. 9:61–85.

    Google Scholar 

  18. Rothman, D. L., Behar, K. L., Hetherington, H. P., and Shulman, R. G. 1984. Homonuclear1H doubleresonance difference spectroscopy of the rat brain in vivo. Proc. natn. Acad. Sci. 81:6330–6334.

    Google Scholar 

  19. Young, R. S. K., Chen, B., Petroff, O. A. C., Gore, J. C., Cowan, B. E., Novotny, E. J., Wong, M., and -zuckerman, K. 1989. The effect of diazepam on neonatal seizure: In vivo31P and1H NMR study. Pediatric Research 25:27–31.

    PubMed  Google Scholar 

  20. Cerdan, S., Parrilla, R., Santoro, J., and Rico, M. 1985.1H NMR detection of cerebral myo-inositol. FEBS Letters 187:165–172.

    Google Scholar 

  21. Fan, T. W.-M., Higashi, R. M., Lane, A. N., and Jardetzky, O. 1986. Combined use of1H-NMR and GC-MS for metabolite monitoring and in vivo1H-NMR assignments. Biochimica and Biophysica Acta 882:154–167.

    Google Scholar 

  22. Juengling, E., and Kammermeier, H. 1980. Rapid assay of adenine nucleotides or creatine compounds in extracts of cardiac tissue by paired-ion reverse-phase high-performance liquid chromatography. Analytical Biochem. 102:358–361.

    Google Scholar 

  23. Koller, K. J., Zaczek, R., and Coyle, J. T. 1984. N-acetyl-aspartyl-glutamate: Regional levels in rat brain and the effect of brain lesions as determined by a new HPLC method. J. Neurochem. 43:1136–1142.

    PubMed  Google Scholar 

  24. Honegger, C. G., Burri, R., Langemann, H., and Kempf, A. 1984. Determination of neurotransmitter systems in human cerebrospinal fluid and rat nervous tissue by high-performance liquid chromatography with on-line data evaluation. J. Chromatography 309:53–61.

    Google Scholar 

  25. Bachmann, C., and Colombo, J.-P. 1983. Increased tryptophan uptake into the brain in hyperammonemia. Life Sci. 33:2417–2424.

    PubMed  Google Scholar 

  26. Burri, R., Lazeyras, F., Aue, W. P., Straehl, P., Bigler, P., Althaus, U., and Herschkowitz, N. 1988. Correlation between31P NMR phosphomonoester and biochemically determined phosphorylethanolamine and phosphatidylethanolamine during development of the rat brain. Dev. Neurosci. 10:213–221.

    PubMed  Google Scholar 

  27. Hore, P. J. 1983. Sovent suppression in Fourier transform nuclear magnetic resonance. J. Magn. Res. 55:283–300.

    Google Scholar 

  28. Campbell, I. D. Dobson, C. M., Williams, R. J. P., and Xavier, A. V. 1973. Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum. J. Magn. Res. 11:172–183.

    Google Scholar 

  29. Agrawal, H. C., Davis, J. M., and Himwich, W.A. 1966. Postnatal changes in free amino acids pool of rat brain. J. Neurochem. 13:607–615.

    PubMed  Google Scholar 

  30. Birken, D. L., and Oldendorf, W. H. 1989. N-acetyl-L-aspartic acid: A literature review of a compound prominent in1H-NMR spectroscopic studies of brain. Neuroscience and Biobehavioral Reviews 13:23–31.

    PubMed  Google Scholar 

  31. Miyake, M., and Kakimoto, Y. 1981. Developmental changes of N-acety-L-glutamic acid in different brain regions and spinal cords of rat and guinea pigs. J. Neurochem. 37:1064–1067.

    PubMed  Google Scholar 

  32. Koller, K. J., and Coyle, J. T. 1984. Ontogenesis of N-acetylaspartate and N-acetyl-aspartyl-glutamate in rat brain. Dev. Brain Res. 15:137–140.

    Google Scholar 

  33. van Zijl, P. C. M., Moonen, C. T. W., Alger, J. R., Cohen, J. S., and Chesnick S. A. 1989. High field localized proton spectroscopy in small volumes: Greatly improve localization and shimming using shielded strong gradients. Magnetic Resonance in Medicine:10:256–265.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burri, R., Bigler, P., Straehl, P. et al. Brain development:1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res 15, 1009–1016 (1990). https://doi.org/10.1007/BF00965747

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965747

Key Words

Navigation