Skip to main content
Log in

Myelination in the developing human brain: Biochemical correlates

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To delineate the biochemical sequences of myelination in the human brain, we analyzed the protein and lipid composition of white matter in 18 baseline cases ranging in age from midgestation through infancy, the critical period in human myelination when the most rapid changes occur. Three adult cases were used as indices of maturity, and 4 cases with major disorders of CNS myelination (maple syrup urine disease, severe periventricular leukomalacia, idiopathic central hypomyelination, and metachromatic leukodystrophy) were analyzed. Brain samples were obtained ≤24 hours after death. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high performance thinlayer chromatography were used to separate and identify proteins and polar and neutral lipids in an average of 10 sites/brain; computer-based densitometry was used to quantify polar lipids. Biochemical sequences, as manifested by the appearance of the myelin-associated lipids and myelin-specific proteins, closely followed previously described anatomic sequences both temporally and by region, and were identical in all sites sampled: sphingomyelin was followed simultaneously by cerebrosides, MBP, PLP, and nonhydroxy-sulfatide, followed by hydroxy-sulfatide. The onset and tempo of the expression of individual constituents, however, were quite variable among sites, suggesting a wide differential in vulnerable periods to insult in biochemically-specific pathways in early life. Cholesterol ester was transiently elevated during late gestation and early infancy, prior to and around the time of the appearance of cerebrosides, sulfatides, PLP, and MBP. Distinctive lipid and protein abnormalities were detected in idiopathic central hypomyelination and metachromatic leukodystrophy. This study underscores the feasibility of the combined biochemical approaches in pediatric brains and provides guidelines for the assessment of disorders of myelination in early human life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brody, B. A., Kinney, H. C., Kloman, A., and Gilles, F. H. 1987. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46:283–301.

    Google Scholar 

  2. Kinney, H. C., Brody, B. A., Kloman, A., and Gilles, F. H. 1988. Sequence of central system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47:217–234.

    Google Scholar 

  3. Flechsig, P. E. 1920. Anatomic des Menschlichen Gehirns und Ruckenmarks auf Myelogenetischer Gundlange. Volume 1. Leipzig: Thieme.

    Google Scholar 

  4. Yakovlev, P. I., and Lecours, A. R. 1967. The myelogenetic cycles of regional maturation of the brain. Pages 3–70,in Minkowski, A. (ed.), Regional development of the brain in early life, Oxford, Blackwell.

    Google Scholar 

  5. Keene, M. F. L., and Hewer, E. E. 1931. Some observations on myelination in the human central nervous system. J. Anat. 66:1–13.

    Google Scholar 

  6. Langworthy, O. R. 1933. Development of behavior patterns and myelinization of the nervous system in the human fetus and infant. Pages 1–57,in Contributions to embryology. Volume XXVI, Carnegie Institute of Washington, Washington, D.C.

    Google Scholar 

  7. Rorke, L. B., and Riggs, H. E. 1969. Myelination of the brain in the newborn. Lippincott, Philadelphia.

    Google Scholar 

  8. Richardson, E. P. 1982. Myelination in the human central nervous system. Pages 146–173,in Haymaker, W., and Adams, R. D. (eds.), Histology and histopathology of the nervous system, Thomas, Springfield.

    Google Scholar 

  9. Gilles, F. H., Leviton, A., and Dooling, E. C. 1983. The Developing Human Brain: growth and Epidemiologic Neuropathology. John Wright-PSG, Inc., Boston.

    Google Scholar 

  10. Weidenheim, K. M., Kress, Y., Ipshteyn, I., Rashbaum, W. K., and Lyman, W. D. 1992. Early myelination in the human fetal lumbosacral spinal cord: Characterization by light and electron microscopy. J. Neuropath. Exp. Neurol. 51:142–149.

    Google Scholar 

  11. Choi, B. 1981. Radial glial of the developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Dev. Brain 1:249–267.

    Google Scholar 

  12. Deber, C. M., and Reynolds, S. J. 1991. Central nervous system myelin: structure, function, and pathology. Clin. Biochem. 24:113–134.

    Google Scholar 

  13. Lees, M. B., and Brostoff, S. W. 1984. Proteins of myelin. Pages 197–217,in Morell, P. (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  14. Fishman, M. A., Agrawal, H. C., Alexander, A., Golterman, J., Matenson, R. E., and Mitchell, R. F. 1975. Biochemical maturation of human central nervous system myelin. J. Neurochem. 24:689–695.

    Google Scholar 

  15. Poduslo, S. E., and Jang, Y. 1984. Myelin development in infant brain. Neurochem. Res. 9:1615–1626.

    Google Scholar 

  16. Niebroj-Dobosz, I., Fidzianska, A., Rafalowska, J., and Sawicka, E. 1980. Correlative biochemical and morphologic studies of myelination in human ontogenesis. I. Myelination of the spinal cord. Acta Neuropathol. (Berl.) 49:145–152.

    Google Scholar 

  17. Savolainen, H., Palo, J., Riekkinen, P., Moronen, P., and Brady, L. E. 1972. Maturation of myelin proteins in human brain. Brain Res. 37:253–263.

    Google Scholar 

  18. Conde, C., Martinez, M., and Ballabriga,A. 1974. Some chemical aspects of brain development. I. Neutral glycosphingolipids, sulfatides, and sphingomyelin. Pediatr. Res. 8:89–92.

    Google Scholar 

  19. Martinez, M. 1982. Myelin lipids in the developing cerebrum, cerebellum, and brain stem of normal and undernourished children. J. Neurochem. 39:1684–1692.

    Google Scholar 

  20. Svennerholm, L., Vanier, M. T., and Jungbjer, B. 1978. Changes in fatty acid composition of human brain myelin lipids during maturation. J. Neurochem. 30:1383–1390.

    Google Scholar 

  21. Kronquist, K. E., Crandall, B. F., Macklin, W. B., and Campagnoni, A. T. 1987. Expression of myelin proteins in the developing human spinal cord: cloning and sequencing of human proteolipid protein cDNA. J. Neurosci. Res. 18:394–401.

    Google Scholar 

  22. Kamholz, J., Toffenetti, J., and Lazzarini, R. A. 1988. Organization and expression of the human myelin basic protein gene. J. Neurosci. Res. 21:62–70.

    Google Scholar 

  23. Eng, L. F., Chao, F. C., Gerstl, B., Pratt, D., and Tavastijevna, M. G. 1986. The maturation of human white matter myelin. Fractionation of the myelin proteins. Biochemistry 7:4455–4465.

    Google Scholar 

  24. Alling, C., and Svennerholm, L. 1973. Concentration and fatty acid composition of cholesteryl esters of normal human brain. J. Neurochem. 20:1589–1603.

    Google Scholar 

  25. Cummings, J. N., Goodwin, H., Woodward, E. M., and Curzon, G. 1958. Lipids in the brain of infants and children. J. Neurochem. 2:289–294.

    Google Scholar 

  26. Clausen, J., Cristensen Lour, H. O., and Andersen, H. 1965. Phospholipid and glycolipid patterns of infant and foetal brain. Thin-layer chromatographic studies. J. Neurochem. 12:599–606.

    Google Scholar 

  27. Svennerholm, L. 1964. The distribution of lipids in the human nervous system. I. Analytical procedure. Lipids of foetal and new-born brain. J. Neurochem. 11:839–853.

    Google Scholar 

  28. Svennerholm, L., and Vanier, M. T. 1972. The distribution of lipids in the human nervous system. II. Lipid composition of human foetal and infant brain. Brain Res. 47:457–468.

    Google Scholar 

  29. Silberman, J., Dancis, J., and Feigin, I. 1961. Neuropathological observations in maple syrup urine disease; branched-chain ketoaciduria. Arch. Neurol. 5:351–363.

    Google Scholar 

  30. Prensky, A. L., Carr, S., and Moser, H. W. 1968. Development of myelin in inherited disorders of amino acid metabolism. A biochemical investigation. Arch. Neurol. 19:552–558.

    Google Scholar 

  31. Rorke, L. B. 1992. Perinatal brain damage. Pages 639–708,in Greenfield's Neuropathology, Adams, J. H., and Duchen, L. W. (eds.), Oxford University Press, New York.

    Google Scholar 

  32. Armstrong, D., and Norman, M. G. 1974. Periventricular leukomalacia in neonates. Complications and sequelae. Arch. Dis. Child. 49:367–375.

    Google Scholar 

  33. Banker, B. Q., and Larrouche, J.-C. 1964. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch. Neurol. 7:386–410.

    Google Scholar 

  34. de Vries, L. S., Wigglesworth, J. S., Regev, R., and Dubowitz, L. M. S. 1988. Evaluation of periventricular leukomalacia during the neonatal period and infancy: correlation of imaging and postmortem findings. Early Hum. Dev. 17:205–219.

    Google Scholar 

  35. Dambska, M., Laure-kamionowska, M., and Schmidt-Sidor, B. 1989. Early and late neuropathological changes in perinatal white matter damage. J. Child. Neurol. 4:291–298.

    Google Scholar 

  36. Paneth, N., Rudelli, R., Monte, W., Rodriguez, E., Pinto, J., Kairam, R., and Kazam, E. 1990. White matter necrosis in very low birth weight infants: neuropathologic and ultrasonographic findings in infants surviving six days or longer. J. Pediatr. 116:975–984.

    Google Scholar 

  37. Leviton, A., and Gilles, F. H. 1984. Acquired perinatal leukoencephalopathy. Ann. Neurol. 16:1–8.

    Google Scholar 

  38. Haberland, C., Brunngraber, E., Witting, L., et al., 1973. Juvenile metachromatic leukodystrophy: case report with clinical, histopathological, ultrastructural and biochemical observations. Acta Neuropathol. (Berl.) 26:93–106.

    Google Scholar 

  39. Suzuki, K., Suzuki, K., and Chin, G. C. 1967. Isolation and clinical characterization of metachromatic granules from a brain with metachromatic leukodystrophy. J. Neuropathol. Exp. Neurol. 26:537–550.

    Google Scholar 

  40. Poduslo, S. E., Miller, K., and Jang, Y. 1982. Biochemical studies of the late infantile form of metachromatic leukodystrophy. Acta Neuropathol. (Berl.) 57:13–22.

    Google Scholar 

  41. Polten, A., et al. 1991. Molecular basis of different forms of metachromatic leukodystrophy. N. Eng. J. Med. 324:18–22.

    Google Scholar 

  42. Kolodny, E. 1989. Metachromatic leukodystrophy and multiple sulfatase deficiency: sulfatide lipidosis. Pages 1721–1750,in Shriver, C. R., et al. (eds.), The Metabolic Basis of Inherited Disease, McGraw Hill, New York.

    Google Scholar 

  43. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  44. Maizel, J. V. 1971. Polyacrylamide gel electrophoresis of viral proteins. Methods Virol. 5:179–246.

    Google Scholar 

  45. Kirschner, D. A., Inouye, H., Ganser, A. L., and Mann, V. 1989. Myelin membrane structure and composition correlated: a phylogenetic study. J. Neurochem. 53:1599–1609.

    Google Scholar 

  46. Ganser, A. L., Kerner, A-L., Brown, B. J., Davisson, M. T., and Kirschner, D. A. 1988. A survey of neurological mutant mice I. Lipid composition of myelinated tissue in known myelin mutants. Dev. Neurosci. 10:99–122.

    Google Scholar 

  47. Towbin, H., Staehlin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyarcrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76:4350–4354.

    Google Scholar 

  48. Warriington, A. E., and Pfeiffer, S. E. 1992. Proliferation and differentiation of O4+ oligodendrocytes in postnatal rat cerebellum: analysis in unfixed tissue slices using anti-glycolipid antibodies. J. Neurosci. Res. 33:338–353.

    Google Scholar 

  49. Bansal, R., Warrington, A. E., Gard, A. L., Ranscht, B., and Pfeiffer, S. E. 1989. Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J. Neurosci. Res. 24:548–557.

    Google Scholar 

  50. Hardy, R., and Reynolds, R. 1991. Proliferation and differentiation of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development 111:1061–1080.

    Google Scholar 

  51. Wender, M., Adamczewska-Goncerzewicz, Z., Szczech, J., and Godlewsik, A., 1988. Myelin lipids in aging human brain. Neurochem. Pathol. 8:121–130.

    Google Scholar 

  52. Riederer, B., Honegger, C., Tobler, H., Ulrich, J. The effect of age on the microheterogeneous pattern of human myelin basic protein. Gerontology 30:234–239.

  53. Soderberg, M., Edlund, C., Kristensson, K., and Dallner, G. 1990. Lipid compositions of different regions of the human brain during aging. J. Neurochem. 54:415–423.

    Google Scholar 

  54. Amur-Umarjee, S. G., Dasu, R. G., and Campagnoni, A. T. 1990. Temporal expression of myelin-specific components in neonatal mouse brain cultures: Evidence that 2′3′-cyclic nucleotide 3′-phosphodiesterase appears prior to galactocerebroside. Dev. Neurosci. 12:251–62.

    Google Scholar 

  55. Knapp, P. E., Skoff, R. P., and Sprinkle, T. J. 1988. Differential expression of galactocerebroside, myelin basic protein, and 2′3′-cyclic nucleotide 3′-phosphodiesterase during development of oligodendrocytes in vitro. J. Neurosci. Res. 21:249–59.

    Google Scholar 

  56. Langan, T. J., and Volpe, J. J., 1986. Obligatory relationship between the sterol biosynthetic pathway and DNA synthesis and cellular proliferation in ghal primary cultures. J. Neurochem. 46:1283–91.

    Google Scholar 

  57. Eto, Y., and Suzuki, K. 1972. Cholesterol esters in developing rat brain: Enzymes of cholesterol ester metabolism. J. Neurochem. 19:117–121.

    Google Scholar 

  58. Jagannatha, H. M., and Sastry, P. S. 1981. Cholesterol-esterifying enzymes in developing rat brain. J. Neurochem. 36:1352–1360.

    Google Scholar 

  59. Friede, R. L. 1989. Developmental Neuropathology. Springer-Verlag, Berlin: 69–81.

    Google Scholar 

  60. Mickel, H. S., and Gilles, F. H. 1970. Changes in glial cells during human telencephalic myeliogenesis. Brain 93:337–46.

    Google Scholar 

  61. Jellinger, K., Seitelberger, F., and Kozik, M. 1971. Perivascular accumulation of lipids in the infant human brain. Acta Neuropathol. (Berl.) 19:331–42.

    Google Scholar 

  62. Leech, R. W., and Alvord, E. C. 1974. Glial fatty metamorphosis. An abnormal response of premyelin glia frequently accompanying periventricular leukomalacia. Am. J. Pathol. 74:603–612.

    Google Scholar 

  63. Sumi, S. M., Leech, R. W., Alvord, E. C., Eng, M. and Niland, K. 1973. Sudanophilic lipids in the unmyelinated primate cerebral white matter following intrauterine hypoxia and acidosis. Assoc. Res. Nerv. Ment. Dis. 51:176–197.

    Google Scholar 

  64. Larroche, J. C., and Amawaka, H. 1973. Glia of myelination and fat deposit during early myelogenesis. Biol. Neonate 22:421–435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Marjorie B. Lees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinney, H.C., Karthigasan, J., Borenshteyn, N.I. et al. Myelination in the developing human brain: Biochemical correlates. Neurochem Res 19, 983–996 (1994). https://doi.org/10.1007/BF00968708

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968708

Key Words

Navigation